Quaternary Iron Nickel Cobalt Selenide as an Efficient Electrocatalyst for Both Quasi-Solid-State Dye-Sensitized Solar Cells and Water Splitting.

Chem Asian J

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, 2205 Songhu Road, Shanghai, 200438, P. R. China.

Published: April 2019

AI Article Synopsis

  • * The material achieves a power conversion efficiency of 8.42% in quasi-solid-state dye-sensitized solar cells and can efficiently split water, with a solar-to-hydrogen conversion efficiency of 5.58%.
  • * Quaternary Fe Ni Co Se outperforms ternary nickel cobalt selenide in conductivity, electrocatalytic performance, and photovoltaic efficiency due to a beneficial synergistic effect.

Article Abstract

Iron nickel cobalt selenides are synthesized through a one-step hydrothermal method. Quaternary Fe Ni Co Se demonstrates multifunctionality and shows high electrocatalytic activity for quasi-solid-state dye-sensitized solar cells with a power conversion efficiency of 8.42 %, the hydrogen evolution reaction, the oxygen evolution reaction, and water splitting. The electric power output from tandem quasi-solid-state dye-sensitized solar cells under one-sun illumination is sufficient to split water and exhibits a solar-to-hydrogen conversion efficiency of 5.58 % with Fe Ni Co Se as the electrocatalyst in this integrated system. Owing to a remarkable synergistic effect, quaternary Fe Ni Co Se is proven to be superior to ternary nickel cobalt selenide in terms of conductivity, electrocatalytic activity, and photovoltaic performance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201900009DOI Listing

Publication Analysis

Top Keywords

nickel cobalt
12
quasi-solid-state dye-sensitized
12
dye-sensitized solar
12
solar cells
12
iron nickel
8
cobalt selenide
8
water splitting
8
electrocatalytic activity
8
conversion efficiency
8
evolution reaction
8

Similar Publications

Airway exposure to lithium nickel manganese cobalt oxide particles induces alterations in lung microenvironment and potential kidney and liver damage in mice.

Toxicology

December 2024

Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China; School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, PR China. Electronic address:

With the increasing use of lithium-ion batteries, the exposure and health effects of lithium nickel manganate cobalt (NMC), a popular cathode material for the battery, have attracted widespread attention. However, the main absorption routes and target organs of NMC are unknown. This study aims to systematically investigate the main absorption routes and target organs of NMC.

View Article and Find Full Text PDF

Corrinoids are cobalt-containing tetrapyrroles. They include adenosylcobalamin (vitamin B) and cobamides that function as cofactors and coenzymes for methyl transfer, radical-dependent and redox reactions. Though cobamides are the most complex cofactors in nature, they are essential in the acetyl-CoA pathway, thought to be the most ancient CO-fixation pathway, where they perform a pterin-to-cobalt-to-nickel methyl transfer reaction catalyzed by the corrinoid iron-sulphur protein (CoFeS).

View Article and Find Full Text PDF

Introduction: The balance of trace elements plays an important role in diabetic kidney disease (DKD) patients. However, studies on the differences in urinary trace elements across different DKD stages are scarce. This study aimed to explore the associations between nine essential trace elements and DKD.

View Article and Find Full Text PDF

Human health risk assessment from potentially toxic elements in the soils of Sudan: A meta-analysis.

Sci Total Environ

December 2024

Department of Physical Geography, University of Göttingen, 37077 Göttingen, Germany. Electronic address:

Potentially toxic elements (PTEs) in soils threaten human health through several exposure pathways. However, health risks posed by PTEs in soils in developing countries have not yet been comprehensively investigated. Thus, such countries lack important information that is needed to implement sustainable solutions.

View Article and Find Full Text PDF

This study analyzed surface water from the River Swat, Pakistan, using inductively coupled plasma mass spectrometry, multivariate statistical techniques, and US-EPA risk assessment models to evaluate the concentrations, distribution, pathways, and potential risks of arsenic (As) and heavy metals, including chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg), and lead (Pb). The results revealed significant correlations (p ≤ 0.01) among metals that indicated common pollution sources, likely influenced by anthropogenic point and non-point activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: