Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cu-ZnO/Al-MCM-41 catalysts were studied for NO reduction. The total metal loading was varied as 3, 5, and 7 wt %, whereas the Cu-to-ZnO ratio was fixed at 1:1. Too high metal loading led to lower reducibility of Cu, as CuO and ZnO covers on the catalyst surface could partially block pores and hinder gas molecules to access the Cu ions. Subsequently, Cu loading was fixed at 2.5 wt %, whereas ZnO content was varied as 0, 2.5, and 3.5 wt %. The results demonstrated that 2.5Cu-2.5ZnO catalyst exhibits the best catalytic activity, as it gave the average NO conversion of 87%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358062 | PMC |
http://dx.doi.org/10.1021/acsomega.8b02741 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!