The idea of doubling the farmers' income in next 5 years has been slated by the Government of India. The specific target of increasing sugarcane farmers' income could be achieved by developing cost-effective technologies, transferring them from laboratory to land, educating the farmers and creating a linkage between all stakeholders. Consistent efforts shall be required to harness all possible sources for increasing farmer's income in and outside the agriculture sector with respect to improvement in sugarcane and sugar productivity, enhancement in resource use efficiency and adopting various other ways and means including intercropping, management of pests and diseases, use of biotechnological tools and minimizing post-harvest deterioration. The advances in sugarcane biotechnology could become remarkable in the coming years, both in terms of improving productivity as well as increasing the value and utility of this crop substantially. In future, genetically modified sugarcane varieties with increased resistance to different biotic and abiotic stresses would serve more towards sugarcane crop improvement. Any possibility of enhancement in the income of sugarcane farmers shall also be dependent upon the profitability and sustainability of the sugar industry. Integration of sugarcane production technologies for improvement in farm productivity, diversified sugarcane production system, reduced cost of cultivation along with increased processing plant efficiency and diversification to produce value added products shall ensure smooth and higher payment to the farmers. Development of low-cost technologies to convert "waste to resource" on a smaller scale shall also help the farmers to increase their income further. This paper focuses on possible measures to be taken up in each aspects of sugarcane cultivation including biotechnological approaches to achieve the goal of enhancing the income of sugarcane farmers substantially, particularly in the sub-tropical region of India.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346606 | PMC |
http://dx.doi.org/10.1007/s13205-019-1568-0 | DOI Listing |
Int J Mol Sci
December 2024
National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Sugarcane ( spp.) is globally considered an important crop for sugar and biofuel production. During sugarcane production, the heavy reliance on chemical nitrogen fertilizer has resulted in low nitrogen use efficiency (NUE) and high loss.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Architectural and Construction Design, Faculty of Architecture, Wrocław University of Science and Technology, Politechnika Wrocławska 27, 50-370 Wrocław, Poland.
This research presents a proposal for alkali-activated permeable concrete composites with the use of industrial by-products, including ground granulated blast-furnace slag (GGBS) and waste-foundry sand, as well as agro-desecrate product, i.e., sugarcane bagasse ash (SBA).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, 4032 Debrecen, Hungary.
Soil contamination with cadmium (Cd) and salinity poses a significant challenge, affecting crop health and productivity. This study explores the combined application of sugarcane bagasse (SCB) and zinc oxide nanoparticles (ZnO NPs) to mitigate the toxic effects of Cd and salinity in wheat plants. Field experiments conducted in Cd-contaminated saline soils revealed that the application of SCB (0, 5, and 10 t ha) and ZnO NPs (0, 12.
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.
Background: Sugarcane is a crucial crop for both sugar and bioethanol production. The nobilization breeding and utilization of wild germplasm have significantly enhanced its productivity. However, the pollen sterility in Saccharum officinarum restricts its role to being a female parent in crosses with Saccharum spontaneum during nobilization breeding, resulting in a narrow genetic basis for modern sugarcane cultivars.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:
Bioenergy crops have been known for their ability to produce biofuels and bioproducts. In this study, the product portfolio of recently developed transgenic sugarcane (oilcane) bagasse has been redefined for recovering natural pigments (anthocyanins), sugars, and vegetative lipids.The total anthocyanin content in oilcane bagasse has been estimated as 92.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!