Intracellular source(s) of [Ca2+]i transients in nonmuscle cells.

Ann N Y Acad Sci

Department of Pharmacology, CNR Center of Cytopharmacology, University of Milan, Italy.

Published: June 1989

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.1988.tb22334.xDOI Listing

Publication Analysis

Top Keywords

intracellular sources
4
sources [ca2+]i
4
[ca2+]i transients
4
transients nonmuscle
4
nonmuscle cells
4
intracellular
1
[ca2+]i
1
transients
1
nonmuscle
1
cells
1

Similar Publications

Mitochondrial fatty acid oxidation regulates monocytic type I interferon signaling via histone acetylation.

Sci Adv

January 2025

Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.

View Article and Find Full Text PDF

A breeding method for Ogura CMS restorer line independent of restorer source in .

Front Genet

January 2025

National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China.

The Ogura cytoplasmic male sterility (CMS) line of has gained significant attention for its use in harnessing heterosis. It remains unaffected by temperature and environment and is thorough and stable. The Ogura cytoplasmic restorer line of is derived from the distant hybridization of and , but it carried a large number of radish fragments into , because there is no homologous allele of the restorer gene in , transferring it becomes challenging.

View Article and Find Full Text PDF

Aim: The exosomal programmed death ligand-1(exoPD-L1) has recently become a topic of interest in the field of oncology. But the prognostic role of exoPD-L1 in cancer patients is inconsistent across previous studies. Therefore, a quantitative meta-analysis was performed to evaluate the prognostic and clinicopathological value of exoPD-L1 in cancer patients.

View Article and Find Full Text PDF

(Mab), a nontuberculous mycobacterium, is increasing in prevalence worldwide and causes treatment-refractory pulmonary diseases. However, how Mab rewires macrophage energy metabolism to facilitate its survival is poorly understood. We compared the metabolic profiles of murine bone marrow-derived macrophages (BMDMs) infected with smooth (S)- and rough (R)-type Mab using extracellular flux technology.

View Article and Find Full Text PDF

piR-26441 inhibits mitochondrial oxidative phosphorylation and tumorigenesis in ovarian cancer through m6A modification by interacting with YTHDC1.

Cell Death Dis

January 2025

Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Ovarian cancer (OC) is a heterogeneous cancer. In contrast to other tumor cells, which rely primarily on aerobic glycolysis (Warburg effect) as their energy source, oxidative phosphorylation (OXPHOS) is also one of its major metabolic modes. Piwi-interacting RNAs (piRNAs) play a regulatory function in various biological processes in tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!