Purpose: The aim of this study is evaluation of the perchloroethylene degradation from aqueous solutions by non-thermal plasma produced in dielectric barrier discharge reactor in two different scenarios: first plasma generated with 225 cc/min mixture of oxygen and argon flow (12% gas ratio of O/Ar), and in the second scenario plasma generated with 225 cc/min of pure argon gas.
Methods: Design studies were performed using response surface methodology and central composite design. All experiments with the selected levels of independent parameters including the initial concentration of perchloroethylene (5-100 mg/L), voltage (20-5 kv) and contact time (15-180 s) was implemented, and 29 tests were proposed by using response surface methodology and central composite design was performed in two experimental scenarios.
Results: Results showed that the Pseudo first-order kinetics coefficient of perchloroethylene degradation in the mixture of oxygen and argon and pure argon scenario under the optimum conditions were 0.024 and 0.016 S respectively. Results conveyed that in order to achieve the highest removal efficiency (100%), the values of contact time, perchloroethylene concentration and voltage variables were predicted 169.55 s, 74.3 mg/l, 18.86 kv respectively in mixture of oxygen and argon scenario and also were predicted 203 s, 85.22 mg/l, 20.39 kv respectively in pure argon scenario.
Conclusions: In the recent study dielectric barrier discharge was an efficient method for perchloroethylene removal with both oxygen an argon mixture and pure argon as input gas. Both input voltage and reaction time has positive effect on perchloroethylene removal; but initial perchloroethylene concentration has negative effect on perchloroethylene removal. Comparison of two plasma scenarios with different input gas shown that plasma generated by mixture of oxygen and argon gas was more powerful and had higher removal efficiency and degradation kinetics than the plasma generated by pure argon gas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277337 | PMC |
http://dx.doi.org/10.1007/s40201-018-0316-4 | DOI Listing |
Pathogens
December 2024
Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
Periprosthetic joint infections occur in 1-2% of all patients undergoing prosthetic joint surgeries. Although strong efforts have been made to reduce infection rates, conventional therapies like one- or two-stage revisions have failed to lower the infection rates. Cold atmospheric plasma (CAP) has shown promising results in reducing bacterial loads on surfaces.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
: Cold atmospheric plasma (CAP) has been demonstrated as an adjustable device to generate various combinations of short-lived reactive oxygen and nitrogen species (RONS) and as a promising appliance for cancer therapy. This study investigated the effects of direct and indirect treatments of Argon-based CAP to cancer cells (A2058, A549, U2OS and BCC) and fibroblasts (NIH3T3 and L929) on cell viability. We also aimed to understand whether plasma-generated RONS were involved in this process using genetic evidence.
View Article and Find Full Text PDFJ AOAC Int
January 2025
Thermo Fisher Scientific, 1214 Oakmead Parkway, Sunnyvale, CA, USA 94085.
Background: Per- and polyfluoroalkyl substances (PFAS) comprise thousands of fluorinated chemicals. They are of growing concern because many PFAS compounds are persistent and toxic. Food contact materials (FCM) containing PFAS pose multiple exposure pathways to humans, prompting twelve states to enact laws banning FCM with PFAS levels exceeding 100 ppm of TOF.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China.
The combination of ZnO with narrow bandgap materials such as CuO is now a common method to synthesize high-performance optoelectronic devices. This study focuses on optimizing the performance of p-CuO/n-ZnO heterojunction pyroelectric photodetectors, fabricated through magnetron sputtering, by leveraging the pyro-phototronic effect. The devices' photoresponse to UV (365 nm) and visible (405 nm) lasers is thoroughly examined.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
Machine learning potential energy functions can drive the atomistic dynamics of molecules, clusters, and condensed phases. They are amongst the first examples that showed how quantum mechanics together with machine learning can predict chemical reactions as well as material properties and even lead to new materials. In this work, we study the behaviour of tungsten trioxide (WO) surfaces upon particle impact by employing potential energy surfaces represented by neural networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!