Background: The emergence of colistin-resistant Enterobacteriaceae from human and animal sources is a public health concern as this antibiotic is considered to be the last line therapeutic option for infections caused by multidrug-resistant Gram-negative bacteria. Here we aimed to determine the prevalence of colistin resistance, among enterobacteria isolated from poultry and the possible underlying colistin resistance mechanisms.
Methods: A collection of 944 cloacal samples were obtained from poultry and screened for colistin resistance. To uncover the molecular mechanism behind colistin resistance, the presence of plasmid encoded colistin resistance genes -, -, - and - was examined by PCR. The nucleotide sequences of the , , , , , and genes were determined. The genetic relatedness of the colistin resistant (ColR) isolates was evaluated by Multilocus sequence typing. Three ColR mutants were generated in vitro by repetitive drug exposure.
Results: Overall from 931 enteric bacteria isolated from poultry samples obtained from 131 farms, nine ColR bacteria (0.96%) with high level colistin resistance (MICs ≥ 64 mg/L) were detected all being identified as The 9 ColR bacteria originated from different farms and belonged to 7 distinct Sequence types including ST11 (22.2%) and ST726 (22.2%) being the most prevalent STs followed by ST37, ST74, ST485, ST525 and novel sequence type 3380 (11.1% each). -type genes were not detected in any isolate. In 88.8% of the isolates (n = 8), MgrB was inactivated by Insertion of IS elements (IS-like, IS-like, IS-like families, positions + 75, + 113, + 117, + 135) and nonsense mutations at codons 8, 16, 30. All ColR isolates harboured wild type PmrA, PhoP, PhoQ or polymorphic variants of PmrB. Sequence analysis of the CrrB revealed a familiar S195N and 4 novel I27V, T150R, F303S and K325R substitutions. PmrB T93N substitution and locus deletion were identified in two laboratory induced ColR mutants and one mutant lacked alteration in the studied loci. In one ColR isolate with wild type MgrB an A83V substitution was detected in CrrA.
Conclusion: It is concluded from our results that colistin resistance in the studied avian isolates was mostly linked to alterations identified within the gene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354369 | PMC |
http://dx.doi.org/10.1186/s13099-019-0282-0 | DOI Listing |
Chicken meat is a major source of foodborne salmonellosis. In Japan, fluoroquinolones and third-generation cephalosporins are the first- and second-choice treatments for Salmonella gastroenteritis, respectively. We investigated the prevalence and antimicrobial resistance of Salmonella in 154 chicken meat products from Hokkaido (42), Tohoku (45), Kanto (5), and Kyushu (62), Japan.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan. Electronic address:
Multi-drug resistant (MDR) Acinetobacter baumannii accounts for high mortality rates in hospital-acquired infections. Colistin is the last resort treatment despite nephrotoxic effects and the emergence of colistin resistant A. baumannii.
View Article and Find Full Text PDFInt J Infect Dis
January 2025
Scientific Research WorkS Peer Support Group (SRWS-PSG), Osaka, Japan; Oku medical clinic, Shimmori 7-1-4, Asahi-ku, Osaka 535-0022, Japan; Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine, School of Public Health, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. Electronic address:
Microb Pathog
January 2025
Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:
Following a period of disuse owing to the emergence of multidrug-resistant Gram-negative bacteria, colistin has regained global attention as an antibiotic of last resort. The resurgence in its utilization has led to a concurrent increase in acquired resistance, presenting a significant challenge in clinical treatment. Predominantly, resistance mechanisms involve alterations in the lipid A component of the lipopolysaccharide (LPS) structure.
View Article and Find Full Text PDFPoult Sci
January 2025
Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539 Castellón, Spain; Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain. Electronic address:
Colibacillosis is a disease caused by avian pathogenic Escherichia coli (APEC) isolates which results in significant morbidity and mortality in poultry, as well as in economic loses. In order to identify APEC strains in a population of 898 E. coli isolates from poultry samples collected from different avian flocks located in the Valencian Region, Spain, we analysed the most significantly related to highly-pathogenic colibacillosis virulence-associated genes (VAGs) (hlyF, iroN, iss, iutA and ompT) by multiplex real-time polymerase chain reaction (RT-PCR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!