Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Algae are autotrophic organisms that are widespread in water bodies. Increased pollution in water bodies leads to eutrophication. However, algae growing in lakes undergoing eutrophication could be utilized towards the generation of added-value bio-electricity using microbial fuel cells (MFCs). In the present study, two methods of electricity generation using raw algae (RA) and RA + acetate (AC) as co-substrate were analyzed in single chamber air cathode MFCs. MFCs supplemented with RA and RA + AC clearly showed higher power density, greater current generation, and improved COD (chemical oxygen demand) removal, which demonstrated the feasibility of using AC as substrate for MFC. The MFC-RA + AC (0.48 mA) generated 28% higher current relative to that generated by MFC with RA alone. Notably, the maximum power densities generated by MFC-RA and MFC-RA + AC were 230 and 410 mW/m, respectively. MFC-RA and MFC-RA + AC exhibited TCOD (total chemical oxygen reduction) removal values of 77% and 86.6%, respectively. Despite the high influent TCOD (758 mg/l) concentration, the MFC-RA + AC exhibited an 8.5% higher COD removal relative to that of MFC-RA (525 mg/l). Our current findings demonstrated effective energy generation using algae biomass with a co-substrate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328417 | PMC |
http://dx.doi.org/10.1007/s12088-018-0769-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!