Design, Synthesis, Pharmacological Evaluation and Vascular Effects of Delphinidin Analogues.

Curr Pharm Des

MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 rue Larrey, 49100, Angers, France.

Published: December 2019

Background: Among polyphenolic compounds suggested to prevent cardiovascular diseases (CVDs) and to explain the "French paradox", the anthocyanidin delphinidin (Dp) has been reported to support at least partly the vascular beneficial effects of dietary polyphenolic compounds including those from fruits and related products as red wine. It has also been highlighted that Dp interacts directly with the active site of estrogen receptor α (ERα), leading to activation of endothelial NO synthase (eNOS) pathway thus contributing to the prevention of endothelial dysfunction in mice aorta. However, anthocyanidins have very low bioavailability and despite a well described in vitro efficacy, the very high hydrophilicity and physicochemical instability of Dp might explain the lack of in vivo reported effects.

Objective: The aim of this study was to identify new Dp analogues with increased lipophilicity and vasorelaxation potential by a chemical modulation of its structure and to characterize the signaling pathway notably in relation with ERα signaling and nitric oxide (NO) production.

Method: OCH3-substituted delphinidin analogues were obtained through the coupling of the corresponding acetophenones with substituted benzaldehydes. Prediction of resorption of the flavylium derivatives was performed with the calculated logP and induction of vasorelaxation was performed by myography on WT and ERαKO mice thoracic aorta rings and compared to Dp. NO production was evaluated in vitro on human primary endothelial cells.

Results: Eight Dp analogues were synthesized including four new flavylium derivatives. Two compounds (9 and 11) showed a strong increase of vasorelaxation potential and a theoretically increased bioavailability compared to Dp. Interestingly, 9 and 11 induced increased O2 - or NO endothelial production respectively and revealed a novel NO-dependent ERα-independent relaxation compared to Dp. We suggested that this mechanism may be at least in part supported by the inhibition of vascular cyclic nucleotide phosphodiesterase (PDEs).

Conclusion: The current study demonstrated that pharmacomodulation of the Dp backbone by replacement of OH groups by OCH3 groups of the A and B rings led to the identification and characterization of two compounds (9 and 11) with enhanced physio-chemical properties that could be associated to higher permeability capability and pharmacological activity for the prevention of CVDs compared to Dp.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612825666190206144913DOI Listing

Publication Analysis

Top Keywords

delphinidin analogues
8
polyphenolic compounds
8
vasorelaxation potential
8
flavylium derivatives
8
design synthesis
4
synthesis pharmacological
4
pharmacological evaluation
4
evaluation vascular
4
vascular effects
4
effects delphinidin
4

Similar Publications

Non-alcoholic fatty liver disease (NAFLD) is a liver pathology concomitant with metabolic disarrangement. This study assessed the therapeutic impacts of delphinidin, an anthocyanin, or α-amyrin, a pentacyclic triterpenoid, on NAFLD in rats and the underlying mechanisms involved. NAFLD was established by feeding a high-fat diet (HFD) for 10 weeks, either alone or in combination with delphinidin (40 mg/kg, oral) or α-amyrin (20 mg/kg, oral).

View Article and Find Full Text PDF

Background: Flavonoids and their analogous are mainly found in pink lady apples, green and black tea (catechins), celery and red peppers, onions, broccoli and spinach, berries, cherries, soybean, citrus fruits, and fungi. The different derivatives of flavonoids belonging to polyphenolic compounds such as 3,4',5,7-Tetrahydroxyflavylium (pelargonidin), 2-(3,4-Dihydroxyphenyl)chromenylium-3,5,7-triol (cyanidin), 3,3',4',5,5',7-Hexahydroxyflavylium (delphinidin), 3,3',4',5,7-Pentahydroxy-5'-methoxyflavylium (petunidin), and 3,4',5,7-Tetrahydroxy-3',5'-dimethoxyflavylium (malvidin) can act as good chelating agents for metal-chelate complex formation. These flavonoid-metal complexes have been reported to have various biomedical and pharmacological activities.

View Article and Find Full Text PDF

The main cause of cancer death among women is breast cancer. The most common type of breast cancer is the estrogen receptor positive breast cancer. Discovery of estrogen receptor provided a highly effective target for treatment of hormone-dependent breast cancer.

View Article and Find Full Text PDF

Benzothiadiazole (BTH) is a functional analogue of salicylic acid able to induce systemic acquired resistance in many horticultural crops. The aim of the work was to investigate how BTH may affect i) fruit quality, ii) ascorbic acid (AsA) oxidation and recycling metabolism and iii) phenolic compounds accumulation, during development and ripening of berries from the two selected cultivars. Blueberry ( L.

View Article and Find Full Text PDF

Delphinidin Increases the Sensitivity of Ovarian Cancer Cell Lines to 3-Bromopyruvate.

Int J Mol Sci

January 2021

Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland.

3-Bromopyruvic acid (3-BP) is a promising anticancer compound. Two ovary cancer (OC) cell lines, PEO1 and SKOV3, showed relatively high sensitivity to 3-BP (half maximal inhibitory concentration (IC) of 18.7 and 40.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!