The objective of the present investigation was to improve the skin deposition and retention of metronidazole (MTZ) in rosacea therapy by incorporating it into nanostructured lipid carriers (NLCs). The main challenge in this endeavor was the partial hydrophilicity of MTZ, which mandated careful selection of excipients, including solid and liquid lipids, surfactants, and their ratios in combination. NLCs were produced by the phase inversion temperature method and finally converted into a gel for topical application. The prepared nanoparticles were evaluated for their particle size, zeta potential, entrapment efficiency, solid-state characteristics, surface morphology, drug release, and permeation through excised skin. The gel was additionally characterized for its pH, drug content, viscosity, and spreadability. The prepared nanoparticles were spherical in shape and of size less than 300 nm. Incorporation of judiciously chosen excipients made possible a relatively high entrapment efficiency of almost 40%. The drug release was found to be biphasic, with an initial burst release followed by sustained release up to 8 hours. In comparison to the plain drug gel, which had a tissue deposition of 11.23%, the NLC gel showed a much superior and desirable deposition of 26.41%. The lipophilic nature of the carrier, its size, and property of occlusion enabled greater amounts of drug to enter and be retained in the skin, simultaneously minimizing permeation through the skin, i.e. systemic exposure. The results of the study suggest that NLCs of anti-rosacea drugs have the potential to be used in the therapy of rosacea.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03639045.2019.1569026DOI Listing

Publication Analysis

Top Keywords

nanostructured lipid
8
lipid carriers
8
improve skin
8
skin deposition
8
deposition retention
8
prepared nanoparticles
8
entrapment efficiency
8
drug release
8
skin
5
drug
5

Similar Publications

Today, active packaging has become essential to increase food safety and decrease food spoilage. In this study, the aim was to delay spoilage and increase the shelf life of rainbow fish fillets with a new hybrid nanocomposite active packaging. Packaging was fabricated with Ethylene vinyl acetate and active compounds such as rosemary extract, zinc oxide nanoparticles, and modified iron (Fe-MMT).

View Article and Find Full Text PDF

Augmented silver sulfadiazine nanostructured lipid carriers impregnated collagen sponge for promoting burn wound healing.

Int J Biol Macromol

January 2025

Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Menoufia, Egypt; Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt. Electronic address:

Silver sulfadiazine (SSD) is a widely used antibacterial agent for burn wound treatment owing to its capability in re-epithelialization and wound healing. However, due to its low solubility, the need for an effective drug delivery system is mandatory. This study aimed to optimize SSD nanostructured lipid-based carriers (NLCs), incorporated in a collagen sponge form as an innovative topical dosage form for effective burn wound treatment.

View Article and Find Full Text PDF

On the formation and stability mechanisms of diverse lipid-based nanostructures for drug delivery.

Adv Colloid Interface Sci

January 2025

Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.

In the evolving landscape of nanotechnology and pharmaceuticals, lipid nanostructures have emerged as pivotal areas of research due to their unique ability to mimic biological membranes and encapsulate active molecules. These nanostructures offer promising avenues for drug delivery, vaccine development, and diagnostic applications. This comprehensive review explores the complex mechanisms underlying the formation and stability of various lipid nanostructures, including lipid liquid crystalline nanoparticles and solid lipid nanoparticles.

View Article and Find Full Text PDF

Anti-icing properties of polar bear fur.

Sci Adv

January 2025

Department of Physics and Technology, University of Bergen, Allegaten 55, Bergen 5007, Norway.

The polar bear () is the only Arctic land mammal that dives into water to hunt. Despite thermal insulation provided by blubber and fur layers and low Arctic temperatures, their fur is typically observed to be free of ice. This study investigates the anti-icing properties of polar bear fur.

View Article and Find Full Text PDF

Nanotechnology and 3D bioprinted scaffolds are revolutionizing the field of wound healing and skin regeneration. By facilitating proper cellular movement and providing a customizable structure that replicates the extracellular matrix, such technologies not only expedite the healing process but also ensure the seamless integration of new skin layers, enhancing tissue repair and promoting overall cell growth. This study centres on the creation and assessment of a nanostructured lipid carrier containing curcumin (CNLC), which is integrated into a 3D bioprinted PLA scaffold system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!