An efficient particle bombardment system for the genetic transformation of asparagus (Asparagus officinalis L.).

Plant Cell Rep

Departamento de Ingeniería Genética de Plantas, Centro De Investigacion y de Estudios Avanzados del IPN, Unidad Irapuato, Apartado Postal 629, 36500 Irapuato, Guanajuato, Mexico.

Published: February 1997

The microprojectile bombardment method was used to transfer DNA into embryogenic callus of asparagus (Asparagus officcinalis L.) and to produce stably transformed asparagus plants. Embryogenic callus, derived from UC 157 and UC72 asparagus cultivars, was bombarded with tungsten particles coated with plasmid DNA that contained genes encoding hygromycin phosphotransferase, phosphinothricin acetyl transferase and β-glucuronidase. Putatively transformed calli were identified from the bombarded tissue after 4 months selection on 25 mg/L hygromycin B plus 4 mg/L phosphinothricin (PPT). By selecting embryogenic callus on hygromycin plus PPT the overall transformation and selection efficiencies were substantially improved over selection with hygromycin or PPT alone, where no transgenic clones were recovered. The transgenic nature of the selected material was demonstrated by GUS histochemical assays and Southern blot hybridization analysis. Transgenic asparagus plants were found to withstand the prescribed levels of the PPT-based herbicide BASTATM for weed control.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01088276DOI Listing

Publication Analysis

Top Keywords

embryogenic callus
12
asparagus asparagus
8
asparagus plants
8
hygromycin ppt
8
asparagus
7
efficient particle
4
particle bombardment
4
bombardment system
4
system genetic
4
genetic transformation
4

Similar Publications

Identification of U6 Promoter and Establishment of Gene-Editing System in (Lamb.) Carr.

Plants (Basel)

December 2024

State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.

This study aimed to establish a CRISPR/Cas9 gene-editing system for (Lamb.) Carr. (Japanese larch).

View Article and Find Full Text PDF

Transcriptome and Gene Expression Analysis Revealed : A Potential New Marker for Somatic Embryogenesis in Common Centaury ( Rafn.).

Int J Mol Sci

December 2024

Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia.

Rafn. is a medicinal plant used as a model for studying plant developmental processes due to its developmental plasticity and ease of manipulation in vitro. Identifying the genes involved in its organogenesis and somatic embryogenesis (SE) is the first step toward unraveling the molecular mechanisms underlying its morphogenic plasticity.

View Article and Find Full Text PDF

Background: Embryogenic callus (EC) has strong regenerative potential, useful for propagation and genetic transformation. miRNAs have been confirmed to play key regulatory roles in EC regeneration across various plants. However, challenges in EC induction have hindered the breeding of drumstick (Moringa oleifera Lam.

View Article and Find Full Text PDF

() genes play significant roles in plant development and stress responses. Difficulties in somatic embryogenesis are a significant constraint on the uniform seedling production and genetic modification of , hindering efforts to improve coffee production in Yunnan, China. This study comprehensively analyzed genes in three species.

View Article and Find Full Text PDF

An efficient regeneration system was established through somatic embryogenesis and shoot organogenesis using mature embryos explants of peanut cultivar 'Georgia-12Y'. The role of plant growth regulator combinations was investigated for embryogenic callus and somatic embryo induction. Results showed that Murashige and Skoog (MS) medium supplemented with 20 μM picloram (4-amino 3, 5, 6-trichloropicolinic acid), casein hydrolysate (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!