Five Species of Xanthomonads Associated with Bacterial Leaf Spot Symptoms in Tomato from Tanzania.

Plant Dis

Danish Seed Health Centre, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Hoejbakkegaard, Allé 13, 2630 Taastrup, Denmark.

Published: May 2012

From 2008 to 2010, leaf spot symptoms were observed on tomato (Solanum lycopersicum Mill.) plants growing in the northern, central and southern highland regions of Tanzania. Symptoms were dark, circular to irregular, water-soaked spots surrounded by chlorotic halos. A total of 136 yellow-pigmented, gram-negative bacteria were isolated from 117 symptomatic plants on nutrient agar. Loopfuls from 24-h-old bacterial cultures were suspended in 500 μl of sterile distilled water and 50 μl of the suspensions were printed on strips of 3MM Whatman chromatography paper. Isolates belonging to the genus Xanthomonas were subsequently identified by PCR amplification of a 402-bp fragment of the Xanthan synthesis pathway gene, gumD (primers: X-gumD-fw 5'GGCCGCGAGTTCTACATGTTCAA and X-gumD-rv 5'CACGATGATGCGGATATCCAGCCACAA). Thirty of the 136 isolates reacted positively in gumD PCR. Pathogenicity of the 30 gumD-positive isolates was confirmed by spraying cell suspensions containing 10 CFU/ml (OD = 0.01) of each isolate on four 14-day-old tomato seedlings (cv. Tanya) and sweet pepper (Capsicum annuum L.) cv. Early-Calwonder in a growth chamber at 28 ± 2°C and maintained under humid conditions. Plants sprayed with X. euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri (2) strains NCPPB 2968, 422, 4321, and 881, respectively, served as positive controls. Plants sprayed with sterile distilled water alone served as negative control. The 30 tested isolates were pathogenic on tomato and pepper within 7 to 14 days and induced similar symptoms as those observed on tomato field plants and plants sprayed with reference strains of xanthomonads. Symptoms were not observed on negative control plants. Yellow-pigmented colonies were reisolated from symptomatic plants and their identity confirmed with GumD-PCR. Based on partial sequencing of the fyuA gene using primers developed by Young et al. (4), all 30 isolates were subsequently grouped into five clusters of the genus Xanthomonas. With recent taxonomy of Xanthomonas (2,4), four of these clusters displayed more than 99% sequence identity to known species of Xanthomonas: X. arboricola EU498923 (18 isolates); X. perforans EU498944 (6 isolates), X. vesicatoria EU498876 (2 isolates), and X. euvesicatoria EU498912 (1 isolate). The remaining three isolates formed a fifth cluster displaying less than 94% sequence identity to any known sequence of fyuA (93% matching strains: X. axonopodis EU498914; X. melonis EU498918, and X. cucurbitae EU498891). Representative sequences for each of the five clusters of bacterial leaf spot (BLS) strains mentioned have been deposited in GenBank (Nos. JQ418487, JQ418488, JQ418489, JQ418490, and JQ418491, respectively). BLS of tomato plants and its economic impact has been reported in Tanzania (3). Different BLS causal agents have recently been reported from the Southwest Indian Ocean Region (1), however, corresponding information for Tanzania has been lacking. On the basis of fyuA sequences, this study reports four genotypes of BLS causal agents corresponding to known species of Xanthomonas. In addition, Xanthomonas isolates with a fyuA genotype not previously assigned to any known species has been identified as part of the BLS pathosystem in Tanzania. References: (1) A. A. Hamza et al. Plant Dis. 94:993, 2010. (2) B. J. Jones et al. Syst. Appl. Microbiol. 27:755, 2004. (3) K. C. Shenge et al. Afr. J. Biotechnol. 6:15, 2007. (4) J. M. Young et al. Syst. Appl. Microbiol. 31:366, 2008.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-01-12-0105-PDNDOI Listing

Publication Analysis

Top Keywords

leaf spot
12
symptoms observed
12
plants sprayed
12
isolates
10
plants
9
bacterial leaf
8
spot symptoms
8
observed tomato
8
symptomatic plants
8
sterile distilled
8

Similar Publications

Investigation and Identification of Fungal Diseases of in China.

Biology (Basel)

January 2025

School of Life and Health Science College, Kaili University, Kaili 556011, China.

The industry plays an important role in the economic development of Yuanjiang county of Yuxi city in Yunnan province, China. In order to reduce the harm of diseases and ensure the quality of products, the occurrence of was investigated. The pathogenic fungi of wild and cultivated species of were isolated by a tissue separation method, and DNA sequencing was carried out by using the sequence analysis of the ribosomal rDNA-ITS region, and the pathogenic fungi were classified and identified by finally combining morphological observations.

View Article and Find Full Text PDF

Agricultural growers worldwide face significant challenges in promoting plant growth. This research introduces a green strategy utilizing nanomaterials to enhance crop production. While high concentrations of nanomaterials are known to be hazardous to plants, this study demonstrates that low doses of biologically synthesized zinc oxide nanoparticles (ZnO NPs) can serve as an effective regulatory tool to boost plant growth.

View Article and Find Full Text PDF

The present study was conducted to evaluate the efficacy of extract against the white spot syndrome virus (WSSV) in black tiger shrimp () following oral administration . The methanol extract derived from the extraction was sprayed into feed at a concentration of 0.0 %, 0.

View Article and Find Full Text PDF

Radishes, which are common root vegetables, are rich in vitamins and minerals, and contain low calories. This vegetable is known for its rapid growth. Nevertheless, the variety of leaf diseases where leaves get affected by various bacterial and fungal diseases can hinder the healthy growth of radish.

View Article and Find Full Text PDF

Background: Cercospora leaf spot (CLS), caused by Cercospora beticola, is the most destructive foliar disease in sugar beet. CLS is conventionally controlled with fungicide, but the emergence of fungicide-resistant populations reinforces the importance of developing and cultivating resistant varieties. Understanding the dynamics of CLS in different varieties is hence essential for sustainable CLS management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!