First Report of Corynespora Leaf Spot on Ailanthus altissima Caused by Corynespora cassiicola in Korea.

Plant Dis

Division of Environmental Science and Ecological Engineering, Korea University, Seoul 136-701, Korea.

Published: April 2012

Ailanthus altissima (Mill.) Swingle, known as tree-of-heaven, is a deciduous tree belonging to the family Simaroubaceae, which is native to both northeast and central China and Taiwan. The trees often have the ability to replace indigenous plants and disrupt native ecosystems (3). In August 2010, a leaf spot disease was observed on young trees in Yangpyeong, Korea. Field observation in 2010 and 2011 showed that infections are common on 1- or 2-year-old trees. Adult trees were rarely infected. Symptoms usually started at the margin of leaves and expanded into irregular, dark brown leaf spots, eventually causing significant premature defoliation. Representative samples were deposited in the herbarium of Korea University (KUS-F25174 and -F25304). Conidiophores of fungi observed microscopically on the leaf spots were erect, brown to dark brown, single or occasionally in clusters, 80 to 550 × 5 to 8 μm, and mostly arose on the abaxial surface of symptomatic leaves. Conidia were borne singly or in short chains of two to four, ranging from cylindrical to broadest at the base and tapering apically, straight to slightly curved, pale olivaceous brown, 3 to 18 pseudoseptate, 70 to 450 × 8 to 22 μm, each with a conspicuous thickened hilum. On potato dextrose agar, single-spore cultures of five isolates were identified as Corynespora cassiicola (Berk. & M.A. Curtis) C.T. Wei on the basis of morphological and cultural characteristics (1,4). A monoconidial isolate was preserved at the Korean Agricultural Culture Collection (Accession No. KACC45510). Genomic DNA was extracted with the DNeasy Plant Mini DNA Extraction Kit (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced with an ABI Prism 337 automatic DNA sequencer (Applied Biosystems, Foster, CA). The resulting sequence of 548 bp was deposited in GenBank (Accession No. JN974462). The sequence showed >99% similarity (1-bp substitution) with a sequence of C. cassiicola from Ipomoea batatas (GenBank Accession No. FJ852716). To conduct a pathogenicity test, a conidial suspension (~2 × 10 conidia/ml) was prepared by harvesting conidia from 2-week-old cultures of KACC45510 and the suspension sprayed onto the leaves of three healthy seedlings. Three noninoculated seedlings served as control plants. Inoculated and noninoculated plants were kept in humid chambers for 48 h in a glasshouse. After 5 days, typical leaf spot symptoms started to develop on the leaves of all three inoculated plants. C. cassiicola was reisolated from the lesions, confirming Koch's postulates. No symptoms were observed on control plants. C. cassiicola is cosmopolitan with a very wide host range (2). To our knowledge, C. cassiicola has not been reported on A. altissima anywhere in the world. According to field observations in Korea, Corynespora leaf spot was most severe in August and September, especially following a prolonged period of moist weather. C. cassiicola may be a potential biocontrol agent for this highly invasive tree species. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute: Kew, Surrey, England, 1971. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA, Retrieved from http://nt.ars-grin.gov/fungaldatabes/ , October 28, 2011. (3) L. B. Knapp and C. D. Canham. J. Torrey Bot. Soc. 127:307, 2000. (4) J. H. Kwon et al. Plant Pathol. J. 17:180, 2001.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-11-11-0938DOI Listing

Publication Analysis

Top Keywords

leaf spot
16
corynespora leaf
8
ailanthus altissima
8
corynespora cassiicola
8
symptoms started
8
dark brown
8
leaf spots
8
genbank accession
8
leaves three
8
control plants
8

Similar Publications

First report of causing leaf spot on in China.

Plant Dis

January 2025

Guizhou University, Guizhou University, Guiyang, Guiyang, Guizhou, China, 550025;

During a field study in the Baili Azalea Forest Area in Guizhou Province, China (27°12'N, 105°48'E) between May and July 2023, symptoms of leaf spot were observed on Franch. The incidence of leaf spot on leaves was about 12% in a field of 1 hm2, significantly reducing their ornamental and economic value. The affected leaves bore irregular, grey-white lesions with distinct dark brown borders, accompanied by black conidiomata.

View Article and Find Full Text PDF

Exclusion is a keystone of integrated pest management to prevent the introduction of pathogens. U.S.

View Article and Find Full Text PDF

, a new species causing sooty spot of kiwifruit in China.

Plant Dis

January 2025

Jiangxi Agricultural University, College of Agriculture, Nanchang, Jiangxi, China;

is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range of plant hosts. is a member of this genus, causing sooty spot on kiwifruit worldwide. With the expansion of kiwifruit cultivation, the incidence of sooty spot has become severe in Fengxin County, Jiangxi Province, China.

View Article and Find Full Text PDF
Article Synopsis
  • The Chinese hibiscus is a popular decorative and medicinal plant, but it is vulnerable to various bacterial infections.
  • In March 2019, a bacterial isolate named "Hibiscus 35-1" was identified from affected hibiscus plants in a New York greenhouse, showing leaf spots and chlorosis after being moved from Florida.
  • Experiments confirmed the pathogenicity of "Hibiscus 35-1," causing symptoms in inoculated hibiscus plants while control plants showed no symptoms, highlighting the significance of bacterial pathogens in ornamental horticulture.
View Article and Find Full Text PDF

Cercosporidium personatum (CP) causes peanut late leaf spot (LLS) disease with 70% yield losses unless controlled by fungicides. CP grows slowly in culture, exhibiting variable phenotypes. To explain those variations, we analyzed the morphology, genomes, transcriptomes and chemical composition of three morphotypes, herein called RED, TAN, and BROWN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!