Both mechanistic target of rapamycin (mTOR) pathway and aldosterone are implicated in the development of cardiovascular and renal disease. However, the interaction between aldosterone and the mTOR pathway is unknown. We hypothesized the following: that (i) increased aldosterone will modulate the activity of the mTORC1 and mTORC2 molecular pathways in the heart and kidney; (ii) a physiologic increase in aldosterone will affect these pathways differently than a pathophysiologic one; and (iii) the changes in the mTOR level/activity will differ between the heart and kidney. In both kidney and heart tissues, phosphorylation of mTOR is significantly decreased when aldosterone levels are physiologically increased (by dietary sodium restriction), followed by a decrease in phosphorylated p70S6K1 in cardiac, but not renal, tissue. Sirtuin 1, an epigenetic modulator, is decreased in the heart but increased in the kidney. Conversely, pathophysiologic aldosterone levels (an infusion for 3 weeks) had divergent effects on phosphorylated mTOR and the downstream substrates of mTORC1 and mTORC2 in cardiac and renal tissues. Increased aldosterone levels significantly alter mTOR activity in the heart and kidney. In the kidney, substantial differences were noted if the increase was produced physiologically vs pathophysiologically, suggesting that mTOR activity, in part, may mediate aldosterone-induced renal damage. Thus, modulating mTOR activity may reduce aldosterone-dependent renal damage similar to mineralocorticoid receptor blockade but potentially with less adverse side effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397424 | PMC |
http://dx.doi.org/10.1210/en.2018-00989 | DOI Listing |
Cardiovasc Intervent Radiol
January 2025
Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.
This article provides radiologists with insights into stem cells' functions, sources, and potentially successful clinical treatments via intravascular injection in organs such as the liver, kidney, pancreas, musculoskeletal system, and for ischemic conditions affecting the brain, heart and limbs. Understanding stem cells' significance in interventional radiology and its limitations enables tailored interventions for diverse conditions, ensuring efficient medical care and optimal treatment selection.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Static cold storage of donor livers at 4 °C incompletely arrests metabolism, ultimately leading to decreases in ATP levels, oxidative stress, cell death, and organ failure. Hydrogen Sulfide (HS) is an endogenously produced gas, previously demonstrated to reduce oxidative stress, reduce ATP depletion, and protect from ischemia and reperfusion injury. HS is difficult to administer due to its rapid release curve, resulting in cellular death at high concentrations.
View Article and Find Full Text PDFAnal Biochem
January 2025
Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572103, Karnataka, India. Electronic address:
Current study evaluates the beneficial role of bio-functionalized zinc ferrite nanoparticles fabricated from an aqueous extract of Decalepis hamiltonii leaves (DHLE.ZnFeO NPs) on sodium nitrite (NaNO) and Diclofenac (DFC) induced oxidative stress in RBCs and Sprague Dawley male rat models. DHLE.
View Article and Find Full Text PDFChest
January 2025
Department of Medicine, University of British Columbia. Electronic address:
Topic Importance: Accurate assessment of a patient's volume status is crucial in many conditions, informing decisions on fluid prescribing, vasoactive agents, and decongestive therapies. Determining a patient's volume status is challenging, due to limitations in examination and investigations and the complexities of fluid homeostasis in disease states. Point-of-care ultrasound (POCUS) is useful in assessing hemodynamic parameters related to volume status, fluid responsiveness, and fluid tolerance.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital; Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Medical University), 400038 Chongqing, China.
Background: Phthalates, widely used as chemical additives, are often found as mixtures in the environment. However, the combined impact of phthalate exposure on sarcopenia remains unclear.
Objective: This study aimed to investigate the relationships between phthalates and sarcopenia in adults.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!