A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A data-driven interactome of synergistic genes improves network-based cancer outcome prediction. | LitMetric

A data-driven interactome of synergistic genes improves network-based cancer outcome prediction.

PLoS Comput Biol

Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Published: February 2019

Robustly predicting outcome for cancer patients from gene expression is an important challenge on the road to better personalized treatment. Network-based outcome predictors (NOPs), which considers the cellular wiring diagram in the classification, hold much promise to improve performance, stability and interpretability of identified marker genes. Problematically, reports on the efficacy of NOPs are conflicting and for instance suggest that utilizing random networks performs on par to networks that describe biologically relevant interactions. In this paper we turn the prediction problem around: instead of using a given biological network in the NOP, we aim to identify the network of genes that truly improves outcome prediction. To this end, we propose SyNet, a gene network constructed ab initio from synergistic gene pairs derived from survival-labelled gene expression data. To obtain SyNet, we evaluate synergy for all 69 million pairwise combinations of genes resulting in a network that is specific to the dataset and phenotype under study and can be used to in a NOP model. We evaluated SyNet and 11 other networks on a compendium dataset of >4000 survival-labelled breast cancer samples. For this purpose, we used cross-study validation which more closely emulates real world application of these outcome predictors. We find that SyNet is the only network that truly improves performance, stability and interpretability in several existing NOPs. We show that SyNet overlaps significantly with existing gene networks, and can be confidently predicted (~85% AUC) from graph-topological descriptions of these networks, in particular the breast tissue-specific network. Due to its data-driven nature, SyNet is not biased to well-studied genes and thus facilitates post-hoc interpretation. We find that SyNet is highly enriched for known breast cancer genes and genes related to e.g. histological grade and tamoxifen resistance, suggestive of a role in determining breast cancer outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6380593PMC
http://dx.doi.org/10.1371/journal.pcbi.1006657DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
genes improves
8
cancer outcome
8
outcome prediction
8
gene expression
8
outcome predictors
8
performance stability
8
stability interpretability
8
find synet
8
genes
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!