In order to reconcile the controversial concepts of myogenically and tubuloglomerular-feedback (TGF)-mediated control of renal vascular resistance, a hypothesis is advanced according to which both mechanisms interact hemodynamically because of their serial arrangement. Whereas the myogenic mechanism is suggested to be localized in the more upstream segments of the preglomerular resistance vessels, the TGF mechanism is assumed to control the pre- and/or postglomerular vascular segment(s), close to the glomerular vascular pole. The efferent vascular resistance, however, is assumed to function generally akin to a 'passive' flow resistor. These assumptions together with elementary hemodynamic considerations, allow formulation of a simple renal hemodynamic model whose quantitative predications regarding the characteristics of RBF, GFR and TGF control are remarkably consistent with the literature: (1) the magnitude of TGF response is mainly dependent upon the myogenic cooperative amplification and (2) although the TGF mechanism is not involved in the autoregulative control of RBF and GFR, changes of the TGF function may shift the autoregulation curve to higher or lower RBF and blood pressure levels.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vascular resistance
8
tgf mechanism
8
rbf gfr
8
control
5
tgf
5
hemodynamic interactions
4
interactions intrinsic
4
intrinsic blood
4
blood flow
4
flow control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!