A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Broadening the taxonomic scope of coral reef palaeoecological studies using ancient DNA. | LitMetric

AI Article Synopsis

  • Marine environments, especially the inshore Great Barrier Reef, have faced significant ecological shifts due to human impacts, notably the decline of dominant coral species like Acropora following European colonization.
  • This study utilized DNA metabarcoding and high-throughput sequencing of ancient environmental DNA (aeDNA) from sediment cores to track changes in reef communities over the last 750 years and incorporated previously overlooked soft-bodied organisms like macroalgae.
  • Findings revealed complex correlations between the presence of various macroalgae and dominant coral species, suggesting that sediment cores contain crucial historical data to understand reef ecosystem changes over time when combined with traditional fossil records.

Article Abstract

Marine environments face acute pressures from human impacts, often resulting in substantial changes in community structure. On the inshore Great Barrier Reef (GBR), palaeoecological studies show the collapse of the previously dominant coral Acropora from the impacts of degraded water quality associated with European colonization. Even more dramatic impacts can result in the replacement of corals by fleshy macroalgae on modern reefs, but their past distribution is unknown because they leave no fossil record. Here, we apply DNA metabarcoding and high-throughput sequencing of the 18S rDNA gene on palaeoenvironmental DNA (aeDNA) derived from sediment cores at two sites on Pandora Reef (GBR), to enhance palaeoecological studies by incorporating key soft-bodied taxa, including macroalgae. We compared temporal trends in this aeDNA record with those of coral genera derived from macrofossils. Multivariate analysis of 12 eukaryotic groups from the aeDNA community showed wide variability over the past 750 years. The occurrence of brown macroalgae was negatively correlated only with the dominant coral at both sites. The occurrence of coralline and green macroalgae was positively correlated with only the dominant coral at one of the sites, where we also observed a significant association between the whole coral community and the occurrence of each of the three macroalgae groups. Our results demonstrate that reef sediments can provide a valuable archive for understanding the past distribution and occurrence of important soft-bodied reef dwellers. Combining information from fossils and aeDNA provides an enhanced understanding of temporal changes of reefs ecosystems at decadal to millennial timescales.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.15038DOI Listing

Publication Analysis

Top Keywords

palaeoecological studies
12
dominant coral
12
reef gbr
8
correlated dominant
8
coral sites
8
coral
6
reef
5
macroalgae
5
broadening taxonomic
4
taxonomic scope
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!