Structural connectivity centrality changes mark the path toward Alzheimer's disease.

Alzheimers Dement (Amst)

Interdisciplinary Computing and Complex Biosystems Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom.

Published: December 2019

Introduction: The pathophysiological process of Alzheimer's disease is thought to begin years before clinical decline, with evidence suggesting prion-like spreading processes of neurofibrillary tangles and amyloid plaques.

Methods: Using diffusion magnetic resonance imaging data from the Alzheimer's Disease Neuroimaging Initiative database, we first identified relevant features for dementia diagnosis. We then created dynamic models with the Nathan Kline Institute-Rockland Sample database to estimate the earliest detectable stage associated with dementia in the simulated disease progression.

Results: A classifier based on centrality measures provides informative predictions. Strength and closeness centralities are the most discriminative features, which are associated with the medial temporal lobe and subcortical regions, together with posterior and occipital brain regions. Our model simulations suggest that changes associated with dementia begin to manifest structurally at early stages.

Discussion: Our analyses suggest that diffusion magnetic resonance imaging-based centrality measures can offer a tool for early disease detection before clinical dementia onset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6350419PMC
http://dx.doi.org/10.1016/j.dadm.2018.12.004DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
diffusion magnetic
8
magnetic resonance
8
associated dementia
8
centrality measures
8
disease
5
structural connectivity
4
connectivity centrality
4
centrality changes
4
changes mark
4

Similar Publications

Age-related cognitive impairment and dementia pose a significant global health, social, and economic challenge. While Alzheimer's disease (AD) has historically been viewed as the leading cause of dementia, recent evidence reveals the considerable impact of vascular cognitive impairment and dementia (VCID), which now accounts for nearly half of all dementia cases. The Mediterranean diet-characterized by high consumption of fruits, vegetables, whole grains, fish, and olive oil-has been widely recognized for its cardiovascular benefits and may also reduce the risk of cognitive decline and dementia.

View Article and Find Full Text PDF

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

The long-term health of former athletes with a history of multiple concussions and/or repetitive head impact (RHI) exposure has been of growing interest among the public. The true proportion of dementia cases attributable to neurotrauma and the neurobehavioral profile/sequelae of multiple concussion and RHI exposure among athletes has been difficult to determine. Across three exposure paradigms (i.

View Article and Find Full Text PDF

Background: Edible insects are used for consumption and traditional medicine due to their rich bioactive compounds. This study examined the bioactive compounds and inhibitory effects of crude extracts from Bombyx mori and Omphisa fuscidentalis on α-glucosidase, α-amylase, acetylcholinesterase (AChE), and tyrosinase. Fatty acids, including n-hexadecanoic acid and oleic acid, were identified in the extracts and evaluated for their inhibitory potential against the enzymes in vitro and in silico.

View Article and Find Full Text PDF

From Antipsychotic to Neuroprotective: Computational Repurposing of Fluspirilene as a Potential PDE5 Inhibitor for Alzheimer's Disease.

J Comput Chem

January 2025

Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia.

Phosphodiesterase 5 (PDE5) inhibitors have shown great potential in treating Alzheimer's disease by improving memory and cognitive function. In this study, we evaluated fluspirilene, a drug commonly used to treat schizophrenia, as a potential PDE5 inhibitor using computational methods. Molecular docking revealed that fluspirilene binds strongly to PDE5, supported by hydrophobic and aromatic interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!