Metabolic Alterations in Cardiopulmonary Vascular Dysfunction.

Front Mol Biosci

Department of Biochemistry and Molecular Biology and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain.

Published: January 2019

Cardiovascular diseases (CVD) are the leading cause of death worldwide. CVD comprise a range of diseases affecting the functionality of the heart and blood vessels, including acute myocardial infarction (AMI) and pulmonary hypertension (PH). Despite their different causative mechanisms, both AMI and PH involve narrowed or blocked blood vessels, hypoxia, and tissue infarction. The endothelium plays a pivotal role in the development of CVD. Disruption of the normal homeostasis of endothelia, alterations in the blood vessel structure, and abnormal functionality are essential factors in the onset and progression of both AMI and PH. An emerging theory proposes that pathological blood vessel responses and endothelial dysfunction develop as a result of an abnormal endothelial metabolism. It has been suggested that, in CVD, endothelial cell metabolism switches to higher glycolysis, rather than oxidative phosphorylation, as the main source of ATP, a process designated as the Warburg effect. The evidence of these alterations suggests that understanding endothelial metabolism and mitochondrial function may be central to unveiling fundamental mechanisms underlying cardiovascular pathogenesis and to identifying novel critical metabolic biomarkers and therapeutic targets. Here, we review the role of the endothelium in the regulation of vascular homeostasis and we detail key aspects of endothelial cell metabolism. We also describe recent findings concerning metabolic endothelial cell alterations in acute myocardial infarction and pulmonary hypertension, their relationship with disease pathogenesis and we discuss the future potential of pharmacological modulation of cellular metabolism in the treatment of cardiopulmonary vascular dysfunction. Although targeting endothelial cell metabolism is still in its infancy, it is a promising strategy to restore normal endothelial functions and thus forestall or revert the development of CVD in personalized multi-hit interventions at the metabolic level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349769PMC
http://dx.doi.org/10.3389/fmolb.2018.00120DOI Listing

Publication Analysis

Top Keywords

endothelial cell
16
cell metabolism
12
cardiopulmonary vascular
8
vascular dysfunction
8
blood vessels
8
acute myocardial
8
myocardial infarction
8
pulmonary hypertension
8
development cvd
8
blood vessel
8

Similar Publications

Klebsiella pneumoniae-derived extracellular vesicles impair endothelial function by inhibiting SIRT1.

Cell Commun Signal

January 2025

Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.

Background: The potential role of Klebsiella pneumoniae (K.pn) in hypertension development has been emphasized, although the specific mechanisms have not been well understood. Bacterial extracellular vesicles (BEVs) released by Gram-negative bacteria modulate host cell functions by delivering bacterial components to host cells.

View Article and Find Full Text PDF

Background: The early stages of tumor bone metastasis are closely associated with changes in the vascular niche of the bone microenvironment, and abnormal angiogenesis accelerates tumor metastasis and progression. However, the effects of lung adenocarcinoma (LUAD) cells reprogrammed by the bone microenvironment on the vascular niche within the bone microenvironment and the underlying mechanisms remain unclear. This study investigates the effects and mechanisms of LUAD cells reprogrammed by the bone microenvironment on endothelial cells and angiogenesis, providing insights into the influence of tumor cells on the vascular niche within the bone microenvironment.

View Article and Find Full Text PDF

Retinopathy of prematurity (ROP) is a proliferative retinal vascular disorder that critically affects the visual development of premature infants, potentially leading to irreversible vision loss or even blindness. Despite its significance, the underlying mechanisms of this disease remain insufficiently understood. In this study, we utilized the oxygen-induced retinopathy (OIR) mouse model and conducted endothelial functional assays to explore the role of Sterol Regulatory Element-Binding Protein 1 (SREBF1) in ROP pathogenesis.

View Article and Find Full Text PDF

Introduction: Brain damage caused by subarachnoid hemorrhage (SAH) currently lacks effective treatment, leading to stagnation in the improvement of functional outcomes for decades. Recent studies have demonstrated the therapeutic potential of exosomes released from mesenchymal stem cells (MSC), which effectively attenuate neuronal apoptosis and inflammation in neurological diseases. Due to the challenge of systemic dilution associated with intravenous administration, intranasal delivery has emerged as a novel approach for targeting the brain.

View Article and Find Full Text PDF

Purpose: To evaluate the intraocular pressure (IOP)-lowering effect and safety of up to two bimatoprost implant administrations versus selective laser trabeculoplasty (SLT).

Design: Phase 3 (Stage 2), randomized, 24-month, multicenter, patient- and efficacy evaluator-masked, paired-eye clinical trial (NCT02507687).

Participants: Patients (n=183) with open-angle glaucoma or ocular hypertension inadequately managed with topical IOP-lowering medication for reasons other than efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!