Follicular lymphoma (FL) is a common non Hodgkin's lymphoma subtype in which immune escape mechanisms are implicated in resistance to chemo-immunotherapy. Although molecular studies point to qualitative and quantitative deregulation of immune checkpoints, in depth cellular analysis of FL immune escape is lacking. Here, by functional assays and analyses we show that a subset of FL patients displays a 'high' immune escape phenotype. These FL cases are characterized by abundant infiltration of PD1 CD16 TCRVγ9Vδ2 γδ T lymphocytes. In a 3D co-culture assay (MALC), γδ T cells mediate both direct and indirect (ADCC in the presence of anti-CD20 mAbs) cytolytic activity against FL cell aggregates. Importantly, PD-1, which is expressed by most FL-infiltrating γδ T lymphocytes with ADCC capacity, impairs these functions. In conclusion, we identify a PD1-regulated γδ T cell cytolytic immune component in FL. Our data provide a treatment rational by PD-1 blockade aimed at boosting γδ T cell anti-tumor functions in FL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6350687 | PMC |
http://dx.doi.org/10.1080/2162402X.2018.1554175 | DOI Listing |
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China. *Corresponding authors, E-mail:
The innate immune response is the first line of defense for the host against viral infections. Targeted degradation of pathogenic microorganisms through autophagy, in conjunction with pattern recognition receptors synergistically inducing the production of interferon (IFN), constitutes an important pathway for the body to resist viral infections. Rubicon, a Run domain Beclin 1-interacting and cysteine-rich domain protein, has an inhibitory effect on autophagy and IFN production.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China. *Corresponding authors, E-mail:
Biochim Biophys Acta Rev Cancer
January 2025
Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646000, China; Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China. Electronic address:
As immunosuppressive cells, Regulatory T cells (Tregs) exert their influence on tumor immune escape within the tumor microenvironment (TME) by effectively suppressing the activity of other immune cells, thereby significantly impeding the anti-tumor immune response. In recent years, the metabolic characteristics of Tregs have become a focus of research, especially the important role of lipid metabolism in maintaining the function of Tregs. Consequently, targeted interventions aimed at modulating lipid metabolism in Tregs have been recognized as an innovative and promising approach to enhance the effectiveness of tumor immunotherapy.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA.
Hepatocellular carcinoma (HCC) is a major global health issue characterized by poor prognosis and complex tumor biology. One of the critical components of the HCC tumor microenvironment (TME) is tumor-associated macrophages (TAMs), which play a pivotal role in modulating tumor growth, immune evasion, and metastasis. Macrophages are divided into two major subtypes: pro-inflammatory M1 and anti-inflammatory M2, both of which may exist in TME with altered function and proportion.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
One of the key factors that contribute to tumor progression and resistance is the immunosuppressive microenvironment of the tumor. CD200 is a recently identified cell surface glycoprotein recognized as an important molecule in breast cancer for its versatile modulation of the immune response via its receptor, CD200R. The interaction between CD200 and CD200R suppresses the immune activities against tumor cells and allows them to be undetected and, in doing so, to escape from the destructive capability of the immune cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!