Absolute pitch, the ability to name or produce a musical tone without a reference, is a rare ability which is often related to early musical training and genetic components. However, it remains a matter of debate why absolute pitch is relatively common in autism spectrum disorders and why absolute pitch possessors exhibit higher autistic traits. By definition absolute pitch is an ability that does not require the relation of tones but is based on a lower-level perceptual entity than relative pitch (involving relations between tones, intervals, and melodies). This study investigated whether a detail-oriented cognitive style, a concept borrowed from the autism literature (weak central coherence theory), might provide a framework to explain this joint occurrence. Two local-to-global experiments in vision (hierarchically constructed letters) and audition (hierarchically constructed melodies) as well as a pitch adjustment test measuring absolute pitch proficiency were conducted in 31 absolute pitch and 33 relative pitch professional musicians. Analyses revealed inconsistent group differences among reaction time, total of correct trials and speed-accuracy-composite-scores of experimental conditions (local vs. global, and congruent vs. incongruent stimuli). Furthermore, amounts of interference of global form on judgments of local elements and vice versa were calculated. Interestingly, reduced global-to-local interference in audition was associated with greater absolute pitch ability and in vision with higher autistic traits. Results are partially in line with the idea of a detail-oriented cognitive style in absolute pitch musicians. The inconsistency of the results might be due to limitations of global-to-local paradigms in measuring cognitive style and due to heterogeneity of absolute pitch possessors. In summary, this study provides further evidence for a multifaceted pattern of various and potentially interacting factors on the acquisition of absolute pitch.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349732 | PMC |
http://dx.doi.org/10.3389/fpsyg.2019.00031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!