Stress granules (SGs) are cytoplasmic RNA-protein aggregates formed in response to inhibition of translation initiation. SGs contribute to the stress response and are implicated in a variety of diseases, including cancer and some forms of neurodegeneration. Neurodegenerative diseases often involve chronic phosphorylation of eukaryotic initiation factor 2α (eIF2α), with deletions of eIF2α kinases or treatment with eIF2α kinase inhibitors being protective in some animal models of disease. However, how and why the integrated stress response (ISR) is activated in different forms of neurodegeneration remains unclear. Because neuroinflammation is common to many neurodegenerative diseases, we hypothesized that inflammatory factors contribute to ISR activation in a cell-nonautonomous manner. Using fluorescence microscopy and immunoblotting, we show here that the endogenously produced product of inflammation, 15-deoxy-Δ-prostaglandin J2 (15-d-PGJ2), triggers eIF2α phosphorylation, thereby activating the ISR, repressing bulk translation, and triggering SG formation. Our findings define a mechanism by which inflammation activates the ISR in a cell-nonautonomous manner and suggest that inhibition of 15-d-PGJ2 production might be a useful therapeutic strategy in some neuroinflammatory contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484127PMC
http://dx.doi.org/10.1074/jbc.RA118.007138DOI Listing

Publication Analysis

Top Keywords

stress response
12
phosphorylation eukaryotic
8
eukaryotic initiation
8
initiation factor
8
factor 2α
8
integrated stress
8
forms neurodegeneration
8
neurodegenerative diseases
8
cell-nonautonomous manner
8
15-deoxy-Δ-prostaglandin promotes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!