Fusarium oxysporum f. sp. betae causes Fusarium yellows in sugar beet (Beta vulgaris). The F. oxysporum population from sugar beet can be highly variable in virulence and morphology and many isolates are nonpathogenic. Rapid and reliable methods to identify pathogenic isolates from nonpathogenic F. oxysporum generally are unavailable. Little is known about nonpathogenic isolates, including the role they may play in population diversity or virulence to sugar beet. Sugar beet is often grown in rotation with other crops, including dry edible bean (Phaseolus vulgaris) and onion (Allium cepa), with F. oxysporum able to cause disease on all three crops. Thirty-eight F. oxysporum isolates were collected from symptomatic sugar beet throughout the United States to investigate diversity of the F. oxysporum population and the influence of crop rotation on pathogenic variation. These isolates were characterized for pathogenicity to sugar beet, dry edible bean, and onion, as well as vegetative compatibility. Pathogenicity testing indicated that some F. oxysporum isolates from sugar beet may cause disease on onion and dry edible bean. Furthermore, vegetative compatibility testing supported previous reports that F. oxysporum f. sp. betae is polyphyletic and that pathogenic isolates cannot be differentiated from nonpathogenic F. oxysporum using vegetative compatibility.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-11-12-1051-REDOI Listing

Publication Analysis

Top Keywords

sugar beet
32
vegetative compatibility
16
dry edible
12
edible bean
12
oxysporum
10
fusarium oxysporum
8
sugar
8
beet
8
oxysporum betae
8
oxysporum population
8

Similar Publications

The utilization of exogenous fiber-degrading enzymes in commercial swine diets is a strategy to increase the nutrient and energy density of poorly digestible ingredients. In a prior set of studies, dietary multienzyme blend (MEblend) supplementation increased the apparent total tract digestibility (ATTD) of nutrients, non-starch polysaccharides, and energy in complete high-fibrous gestation diets by 6% when fed to gestating sows. The current study aimed to determine the effects of MEblend (containing xylanase, β-glucanase, cellulase, amylase, protease, pectinase, and invertase activities) supplementation on ATTD of energy and nutrients of individual feedstuffs commonly used in gestating sow diets across major pork-producing regions worldwide, which differ in their fibrous components.

View Article and Find Full Text PDF

Introduction: Weeds are a major factor affecting crop yield and quality. Accurate identification and localization of crops and weeds are essential for achieving automated weed management in precision agriculture, especially given the challenges in recognition accuracy and real-time processing in complex field environments. To address this issue, this paper proposes an efficient crop-weed segmentation model based on an improved UNet architecture and attention mechanisms to enhance both recognition accuracy and processing speed.

View Article and Find Full Text PDF

Effect of intra- and inter-specific plant interactions on the rhizosphere microbiome of a single target plant at different densities.

PLoS One

January 2025

Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America.

Root and rhizosphere studies often focus on analyzing single-plant microbiomes, with the literature containing minimum empirical information about the shared rhizosphere microbiome of multiple plants. Here, the rhizosphere of individual plants was analyzed in a microcosm study containing different combinations and densities (1-3 plants, 24 plants, and 48 plants) of cover crops: Medicago sativa, Brassica sp., and Fescue sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!