Squash vein yellowing virus (SqVYV) is the cause of viral watermelon vine decline. The virus is whitefly-transmitted, induces a systemic wilt of watermelon plants, and causes necrosis and discoloration of the fruit rind. In the field, SqVYV is often detected in watermelon in mixed infections with other viruses including the aphid-transmitted Papaya ringspot virus type W (PRSV-W). In this study, watermelon plants of different ages were inoculated with SqVYV or SqVYV+PRSV-W in the greenhouse or SqVYV in the field to characterize the physiological response to infection. Symptoms of vine decline appeared about 12 to 16 days after inoculation with SqVYV regardless of plant age at time of inoculation, plant growth habit (trellised or nontrellised), and location (greenhouse or field). However, the presence of PRSV-W delayed the appearance of vine decline symptoms by 2 to 4 days, and vine decline did not develop on plants with no fruit. For all inoculation treatments, more severe symptoms were observed in younger watermelon plants. Physiological responses to SqVYV infection included reduction in plant and fruit weights, alterations in fruit rind and flesh color, reduction in fruit sucrose content, increase in fruit acid content, and changes in plant nutrient composition, particularly increases in Ca, Mg, B, Mn, and Zn and decreases in K and N. These results demonstrate wide-ranging physiological effects of SqVYV infection and provide new insights into watermelon vine decline.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-01-13-0075-RE | DOI Listing |
Microbiol Res
January 2025
Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis snc, Viterbo 01100, Italy. Electronic address:
Over the past decade, Italian kiwifruit orchards and overall production have faced a significant threat from Kiwifruit Vine Decline Syndrome (KVDS). Despite the insights gained from metagenomics studies into the microbial communities associated with the disease, unanswered questions still remain. In this study, the evolution of bacterial, fungal, and oomycetes communities in soil and root endosphere at three different time points during the vegetative season was investigated for the first time in a KVDS-affected orchard in the Lazio Region.
View Article and Find Full Text PDFMicroorganisms
November 2024
Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, 30100 Murcia, Spain.
Kiwifruit Vine Decline Syndrome (KVDS) has become a major concern in Italy, impacting both plant health and production. This study aims to investigate how KVDS affects soil health indicators and the composition of soil microbial communities by comparing symptomatic and asymptomatic areas in two kiwifruit orchards located in Latium, Italy. Soil samples were collected during both spring and autumn to assess seasonal variations in soil physicochemical properties, enzyme activities, and microbial biomass.
View Article and Find Full Text PDFFront Plant Sci
August 2024
Agricultural Research Service (USDA-ARS), U.S. Vegetable Laboratory (USVL), United States Department of Agriculture, Charleston, SC, United States.
Watermelon () is the third largest fruit crop in the world in term of production. However, it is susceptible to several viruses. Watermelon vine decline (WVD), caused by whitefly-transmitted squash vein yellowing virus (SqVYV), is a disease that has caused over $60 million in losses in the US and continues to occur regularly in southeastern states.
View Article and Find Full Text PDFJ Fungi (Basel)
June 2024
Biological Control Research Institute, Turkish Ministry of Agriculture and Forestry, 01321 Adana, Türkiye.
species are agriculturally important fungi with a broad host range and can be found as endophytic, pathogenic, or opportunistic parasites in many crop plants. This study aimed to identify species in bare-rooted, dormant plants in Turkish grapevine nurseries using molecular identification methods and assess their pathogenicity. Asymptomatic dormant plants were sampled from grapevine nurseries (43) in different regions of the country, and fungi were isolated from plant roots and internal basal tissues.
View Article and Find Full Text PDFBMJ Mil Health
July 2024
Centre of Health and Applied Sport and Exercise Research, University of Chichester, Chichester, West Sussex, UK.
Introduction: Military personnel must manage a multitude of competing physiological and cognitive stressors while maintaining high levels of performance. Quantifying the external workload and cognitive demands of tactical military field exercises closely simulating operational environments, will provide a better understanding of stressors placed on personnel to inform evidence-based interventions.
Methods: Thirty-one soldiers completing a dismounted 48 hours tactical field exercise, participated in the study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!