The effect of exogenous applications of potassium (K), calcium (Ca), and nitrogen (N) on the susceptibility of four banana cultivars to Banana Xanthomonas wilt (BXW) was studied. Murashige and Skoog (MS) medium with normal concentrations of K at 783 mg/liter, Ca at 121 mg/liter, and N at 841 mg/liter was modified to contain various concentrations of K, Ca, and N. Each nutrient was varied singly, each with three replicate experiments. The concentrations were K at 78, 157, 391, 783, 1,565, and 3,913 mg/liter; Ca at 12, 24, 60, 121, 241, and 603 mg/liter; and N at 84, 168, 420, 841, and 1,682 mg/liter. Plantlets were generated in vitro on normal MS medium and later exposed to the nutrient concentrations for a total of 8 weeks. Thereafter, they were artificially inoculated with Xanthomonas campestris pv. musacearum using an insulin syringe. In each nutrient, plantlets exposed to higher nutrient concentrations significantly (P < 0.0001) accumulated more nutrient in their tissues compared with those exposed to lesser nutrient concentrations. Wilt incidences were significantly reduced, and incubation periods (time from inoculation to appearance of first disease symptoms) increased, with increasing nutrient application. The study lays a background for in vivo studies aimed at management of BXW using nutrients, such as fertilizer application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-07-12-0646-RE | DOI Listing |
Chemosphere
January 2025
Department of Agricultural Machinery Engineering, University of Tehran, Iran.
Soil oil pollution is a major environmental issue, especially in oil-producing nations, as it threatens the health of plants, animals, and humans. While bioremediation has been extensively utilized as a cost-effective method for restoring oil-contaminated soil, its environmental impact has garnered relatively little attention. Researchers often concentrate on reducing pollutant concentrations below permissible limits to restore soil quality.
View Article and Find Full Text PDFSci Rep
January 2025
College of Ecology and Environment, Hainan University, Haikou, 570228, China.
Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.
View Article and Find Full Text PDFMol Metab
January 2025
Department of Biological Chemistry, University of California, Irvine School of Medicine. Electronic address:
Objectives: Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
To realize the comprehensive utilization of large amounts of high-ash coal slime and comprehensively understand the excellent performance of nutrient release and lead and cadmium adsorption of high-ash coal slime silicon composite materials, green and safe mild hydrothermal conditions (200 °C) were used to prepare the rich-rich coal slime. Zeolite/tobermorite composites (Z-TOBs) were used in this study. Batch adsorption tests and repeated extraction tests were used to determine whether silicon, potassium, and calcium nutrients of Z-TOBs have sustained release properties and are affected by pH.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, Vienna 1200, Austria. Electronic address:
Lead (Pb), a toxic metal, causes severe health hazards to both humans and plants due to environmental pollution. Biochar addition has been efficiently utilized to enhance growth of plants as well as yield in the presence of Pb-induced stress. The present research introduces a novel use of biochar obtained from the weed Achyranthes japonica to enhance the growth of plants in Pb-contaminated soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!