Spearmint (Mentha spicata L.) is an aromatic plant belonging to the family Lamiaceae, grown as well as an ornamental potted plant. During the beginning of 2013, extensive wilting was observed on 4-month-old potted plants of M. spicata 'Moroccan' grown in a commercial, unheated, plastic house located near Albenga (Savona, northern Italy). Initial symptoms included stem necrosis and darkening and withering of leaves. Wilting of the plant occurred 2 to 4 days after the appearance of the initial symptoms. Infected plants were characterized by the presence of cottony soft rot. In the presence of high relative humidity, lesions became covered with a whitish mycelium and irregular, dark gray sclerotia (2.0 to 9.0 × 1.8 to 4.0, average 4.0 × 2.6 mm) were produced on the mycelium. Diseased tissue was surface sterilized for 1 min in 1% NaOCl and plated on potato dextrose agar (PDA) amended with 100 mg/l streptomycin sulfate. White colonies developed from infected stem pieces and produced sclerotia, mainly at the peripheries of the plates, measuring 2.0 to 8.0 × 2.0 to 6.0 (average 4.4 × 3.1) mm. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS1F/ITS4 and sequenced. BLAST analysis (1) of the 514-bp segment showed a 99% homology with the sequence of Sclerotinia sclerotiorum (JN012605). The nucleotide sequence has been assigned the GenBank Accession KC848769. The morphological and molecular identification permitted to identify as S. sclerotiorum (Lib.) de Bary (2) the causal agent of the disease observed on M. spicata. Pathogenicity of one isolate obtained from infected plants was confirmed by inoculating three 7-month-old plants cv. Moroccan transplanted in 1 liter pots in a glasshouse in a sphagnum peat/pomix/pine bark/clay (50:20:20:10) mix. Each plant was inoculated by placing 4 g of sterile wheat kernels infested with mycelium and sclerotia in the soil and around the collar. Three non-inoculated plants served as controls. Plants were maintained in a growth chamber at 24 ± 1°C and relative humidity >90%. The inoculation trial was carried out twice. All inoculated plants developed the symptoms, consisting of stem necrosis, 5 days after soil infestation, followed by leaf yellowing. White cottony mycelium and dark sclerotia developed on stems and at the base of all inoculated plants. Eventually, infected plants wilted. Control plants remained symptomless. S. sclerotiorum was reisolated from the stems of inoculated plants. To our knowledge, this is the first report of S. sclerotiorum on M. spicata in Italy as well as worldwide. The disease has been previously reported on M. piperita in the United States (4) and on M. arvensis in India (3). The economic importance of this disease in Italy is at present limited. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) N. F. Buchwald. Kongl. Veterisk Landb. Aarssk. 75, 1949. (3) K. Perveen et al. Indian Phytopathol. 62:310, 2009. (4) C. B. Skotland and J. D. Menzies. Plant Dis. Rep. 41:493, 1957.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-04-13-0398-PDN | DOI Listing |
Plant Cell Rep
January 2025
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.
View Article and Find Full Text PDFMol Plant
January 2025
College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China. Electronic address:
Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.
View Article and Find Full Text PDFCommun Biol
January 2025
Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp.
View Article and Find Full Text PDFJ Proteomics
January 2025
Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil. Electronic address:
The label-free shotgun proteomics analysis carried out in this study aimed to understand the molecular mechanisms that contribute towards tomato susceptibility to Xanthomonas euvesicatoria pv. perforans (Xep). To achieve this, comparative proteomics was performed on susceptible inoculated plants with the bacterium and the control group (saline solution) at 24 and 48 h after inoculation (hai).
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Key Laboratory of Exploration and Utilization of Aquatic genetic Resources, Ministry of Education, International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China. Electronic address:
Frog virus 3-like ranaviruses (FV3-like viruses), particularly FV3 (Frog virus 3), represent typical species within the genus Ranavirus, primarily infecting amphibians and reptiles, thereby posing serious threats to aquaculture and biodiversity conservation. We designed a pair of universal primers and a probe targeting the conserved region of the major capsid protein (MCP) genes of FV3-like viruses. By integrating recombinase-aided amplification (RAA) with lateral flow dipstick (LFD) technology and real-time fluorescence (RF) modification, we established RAA-LFD and RF-RAA assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!