Background: Mitochondrial dysfunction is an important component of the aging process and has been implicated in the development of many human diseases. Mitochondrial DNA copy number (mtDNAcn), an indirect biomarker of mitochondrial function, is sensitive to oxidative damage. Few population-based studies have investigated the impact of fruit and vegetable consumption and cigarette smoke (2 major sources of exogenous antioxidants and oxidants) on leukocyte mtDNAcn.
Objectives: We investigated the association between fruit and vegetable consumption, cigarette smoke, and leukocyte mtDNAcn based on data from the Nurses' Health Study (NHS).
Methods: Data from 2769 disease-free women in the NHS were used to examine the cross-sectional associations between dietary sources of antioxidants, cigarette smoke, and leukocyte mtDNAcn. In vitro cell-based experiments were conducted to support the findings from the population-based study.
Results: In the multivariable-adjusted model, both whole-fruit consumption and intake of flavanones (a group of antioxidants abundant in fruit) were positively associated with leukocyte mtDNAcn (P-trend = 0.005 and 0.02, respectively), whereas pack-years of smoking and smoking duration were inversely associated with leukocyte mtDNAcn (P-trend = 0.01 and 0.007, respectively). These findings are supported by in vitro cell-based experiments showing that the administration of naringin, a major flavanone in fruit, led to a substantial increase in mtDNAcn in human leukocytes, whereas exposure to nicotine-derived nitrosamine ketone, a key carcinogenic ingredient of cigarette smoke, resulted in a significant decrease in mtDNAcn of cells (all P < 0.05). Further in vitro studies showed that alterations in leukocyte mtDNAcn were functionally linked to the modulation of mitochondrial biogenesis and function.
Conclusions: Fruit consumption and intake of dietary flavanones were associated with increased leukocyte mtDNAcn, whereas cigarette smoking was associated with decreased leukocyte mtDNAcn, which is a promising biomarker for oxidative stress-related health outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367969 | PMC |
http://dx.doi.org/10.1093/ajcn/nqy286 | DOI Listing |
J Clin Med
December 2024
Department of Oral Medicine and Periodontology, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, 1000 Ljubljana, Slovenia.
: Periodontitis is an inflammatory disease induced by bacteria in dental plaque that can activate the host's immune-inflammatory response and invade the bloodstream. We hypothesized that a higher periodontal inflamed surface area (PISA) is associated with higher levels of inflammatory biomarkers, lower levels of antioxidants, and mitochondrial DNA copy number (mtDNAcn). : Using periodontal parameters, we calculated the PISA score, measured the levels of inflammatory biomarkers and antioxidants in the serum, and took buccal swabs for mtDNA and nuclear DNA (nDNA) extraction.
View Article and Find Full Text PDFBiochem Genet
November 2024
Institute of Plant Physiology and Genetics, Laboratory of Genome Dynamics and Stability, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bldg. 21, 1113, Sofia, Bulgaria.
Substance use disorder (SUD) is a complex condition involving psychological, sociocultural, and genetic factors. In this study, we examined the alternations in mitochondrial DNA copy number (mtDNAcn) and telomere length (TL) and their relationship to demographic, medical, heredity, and substance use characteristics in patients with SUD and healthy controls. We investigated a total cohort of 54 participants: 21 healthy individuals, 17 patients with alcohol dependence (AD), and 16 patients with drug dependence (DD).
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Diabetes and Obesity Theme, School of Cardiovascular Medicine and Metabolic Sciences, Faculty of Life Sciences and Medicine , King's College London, London, UK.
Mitochondrial DNA copy number (mtDNA-CN) in human body fluids is widely used as a biomarker of mitochondrial dysfunction in common metabolic diseases. Here we describe protocols to measure cellular and/or cell free (cf)-mtDNA-CN in human peripheral blood and urine. Cellular mtDNA is located inside the mitochondria where it encodes key subunits of the respiratory complexes in mitochondria and is usually normalized with reference to the nuclear genome as the mitochondrial genome to nuclear genome ratio (Mt/N) in either whole blood, peripheral blood mononuclear cells (PBMCs), or whole urine.
View Article and Find Full Text PDFExp Gerontol
November 2024
Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China. Electronic address:
iScience
September 2024
Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China.
Increasing cohort studies have examined the link between mitochondrial DNA copy number (mtDNA-CN) and cardiovascular disease (CVD), with inconsistent findings. We searched PubMed, EMBASE, and Web of Science up to July 11, 2023 and used a random-effects model to calculate summary hazard ratios (HRs) and 95% confidence intervals (CIs). This systematic review and meta-analysis included 8 articles encompassing 29 studies with 646,398 participants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!