A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optogenetic Navigation of Routes Leading to Protein Amyloidogenesis in Bacteria. | LitMetric

Optogenetic Navigation of Routes Leading to Protein Amyloidogenesis in Bacteria.

J Mol Biol

Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas-CSIC, c/ Ramiro de Maeztu 9, E28040 Madrid, Spain. Electronic address:

Published: March 2019

Modulation of liquid-liquid and liquid-hydrogel phase transitions is central to avoid the cytotoxic aggregation of proteins in eukaryotic cells, but knowledge on its relevance in bacteria is limited. Here the power of optogenetics to engineer proteins as light-responsive switches has been used to control the balance between solubility and aggregation for LOV2-WH1, a chimera between the plant blue light-responsive domain LOV2 and the bacterial prion-like protein RepA-WH1. These proteins were first linked by fusing, as a continuous α-helix, the C-terminal photo-transducer Jα helix in LOV2 with the N-terminal domain-closure α1 helix in RepA-WH1, and then improved for light-responsiveness by including mutations in the Jα moiety. In the darkness and in a crowded solution in vitro, LOV2-WH1 nucleates the irreversible assembly of amyloid fibers into a hydrogel. However, under blue light illumination, LOV2-WH1 assembles as soluble oligomers. When expressed in Escherichia coli, LOV2-WH1 forms in the darkness large intracellular amyloid inclusions compatible with bacterial proliferation. Strikingly, under blue light, LOV2-WH1 aggregates decrease in size, while they become detrimental for bacterial growth. LOV2-WH1 optogenetics governs the assembly of mutually exclusive inert amyloid fibers or cytotoxic oligomers, thus enabling the navigation of the conformational landscape of protein amyloidogenesis to generate potential photo-activated anti-bacterial devices (optobiotics).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2019.01.037DOI Listing

Publication Analysis

Top Keywords

protein amyloidogenesis
8
amyloid fibers
8
blue light
8
lov2-wh1
6
optogenetic navigation
4
navigation routes
4
routes leading
4
leading protein
4
amyloidogenesis bacteria
4
bacteria modulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!