The role of far-red spectral states in the energy regulation of phycobilisomes.

Biochim Biophys Acta Bioenerg

Department of Physics, University of Pretoria, Pretoria 0023, South Africa; Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands.

Published: April 2019

The main light-harvesting pigment-protein complex of cyanobacteria and certain algae is the phycobilisome, which harvests sunlight and regulates the flow of absorbed energy to provide the photochemical reaction centres with a constant energy throughput. At least two light-driven mechanisms of excited energy quenching in phycobilisomes have been identified: the dominant mechanism in many strains of cyanobacteria depends on the orange carotenoid protein (OCP), while the second mechanism is intrinsically available to a phycobilisome and is possibly activated faster than the former. Recent single molecule spectroscopy studies have shown that far-red (FR) emission states are related to the OCP-dependent mechanism and it was proposed that the second mechanism may involve similar states. In this study, we examined the dynamics of simultaneously measured emission spectra and intensities from a large set of individual phycobilisome complexes from Synechocystis PCC 6803. Our results suggest a direct relationship between FR spectral states and thermal energy dissipating states and can be explained by a single phycobilin pigment in the phycobilisome core acting as the site of both quenching and FR emission likely due to the presence of a charge-transfer state. Our experimental method provides a means to accurately resolve the fluorescence lifetimes and spectra of the FR states, which enabled us to quantify a kinetic model that reproduces most of the experimentally determined properties of the FR states.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2019.01.007DOI Listing

Publication Analysis

Top Keywords

spectral states
8
second mechanism
8
states
7
energy
5
role far-red
4
far-red spectral
4
states energy
4
energy regulation
4
regulation phycobilisomes
4
phycobilisomes main
4

Similar Publications

The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the N spectral frequency dimension.

View Article and Find Full Text PDF

Sources of Microstructure in Mammalian Cochlear Responses.

J Assoc Res Otolaryngol

January 2025

Caruso Department of Otolaryngology-Head & Neck Surgery, University of Southern California, Los Angeles, CA, USA.

Quasiperiodic fluctuations with frequency are observed in a variety of responses that either originate from or strongly depend on the cochlea's active mechanics. These spectral microstructures are unique and stable features of individual ears and have been most thoroughly studied in behavioral hearing thresholds and otoacoustic emissions (OAEs). While the exact morphology of the microstructure patterns may differ across measurement types, the patterns are interrelated and are thought to depend on common mechanisms.

View Article and Find Full Text PDF

In spectral analysis, selecting the right spectral variables is crucial for effective modeling. It reduces data dimensionality, removes irrelevant wavelength points, and improves both the generalization ability and computational efficiency of the model. However, the number of available samples often falls short of the total possible combinations of wavelengths, making variable selection a non-deterministic polynomial-time (NP) hard optimization problem.

View Article and Find Full Text PDF

Massively parallel Hong-Ou-Mandel interference based on independent soliton microcombs.

Sci Adv

January 2025

State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.

Hong-Ou-Mandel (HOM) interference is the foundation of quantum optics to test the degree of indistinguishability of two incoming photons, playing a key role in quantum communication, sensing, and photonic quantum computing. Realizing high-visibility HOM interference with massively parallel optical channels is challenging due to the lack of available natural optical references for aligning independent arrayed laser pairs. Here, we demonstrate 50 parallel comb-teeth pairs of continuous-wave weak coherent photons HOM interference using two independently frequency post-aligned soliton microcombs (SMCs), achieving an average fringe visibility over 46%.

View Article and Find Full Text PDF

We have produced state selective molecular angular momentum orientation using dressed states created by a cw optical field. The experiment was carried out with Li_{2} molecules and a combination of left- and right-hand circularly polarized lasers. Our approach exploits the dependence of the Rabi frequency on the quantum number M, which makes it possible to achieve complete M-state selectivity and thus molecular angular momentum orientation relative to laboratory frame space-fixed axes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!