A Probabilistic Model for Crystal Growth Applied toProtein Deposition at the Microscale.

Materials (Basel)

Department of Nanobiotechnology, Institute of Biophysics, University of Natural Resources and LifeSciences (BOKU-Wien), Muthgasse 11, 1190 Vienna, Austria.

Published: February 2019

A probabilistic discrete model for 2D protein crystal growth is presented. This model takesinto account the available space and can describe growing processes of a different nature due to theversatility of its parameters, which gives the model great flexibility. The accuracy of the simulation istested against a real recrystallization experiment, carried out with the bacterial protein SbpA fromLysinibacillus sphaericus CCM2177, showing high agreement between the proposed model and theactual images of the crystal growth. Finally, it is also discussed how the regularity of the interface(i.e., the curve that separates the crystal from the substrate) affects the evolution of the simulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384748PMC
http://dx.doi.org/10.3390/ma12030479DOI Listing

Publication Analysis

Top Keywords

crystal growth
12
probabilistic model
4
crystal
4
model crystal
4
growth applied
4
applied toprotein
4
toprotein deposition
4
deposition microscale
4
microscale probabilistic
4
probabilistic discrete
4

Similar Publications

A simple and effective method to remove pigments from heterologous secretory proteins expressed in Pichia pastoris.

Adv Biotechnol (Singap)

February 2024

CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.

Pichia pastoris is a popular yeast host for high-level heterologous expression of proteins on an industrial scale owing to its reliable expression, robust growth, high fermentation density, and easy genetic manipulation and cultivation at a relatively low cost. Of particular interest is its high secretion efficiency for small proteins including insulin, human serum albumin, vaccines, enzymes, and llama-derived heavy-chain only antibodies (nanobodies) for pharmaceutical and research applications. However, a recurring challenge in using P.

View Article and Find Full Text PDF

Site-Selective and High-Density Gold Nanoparticle Photodeposition on the Edges of ZnO Nanowires.

J Phys Chem Lett

January 2025

Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.

Selective modification of chemically active sites on supports, such as steps, edges, and corners, with metal nanoparticles (NPs) is a challenging topic in the fields of catalysis and photocatalysis. However, the formation of site-selective, high-density metal NPs on a support has not yet been achieved. Radial ZnO mesocrystals composed of hexagonal nanowires (NWs) with {101̅0} sidewalls were synthesized by a simple solution-phase method.

View Article and Find Full Text PDF

Synthesis and non-isothermal crystallization kinetics of polyamide 66 copolymers containing alicyclic structures.

RSC Adv

January 2025

National and Local Joint Engineering Research Center of Advanced Packaging Material Research and Development Technology, School of Packaging and Materials Engineering, Hunan University of Technology Zhuzhou 412007 Hunan China

To further improve the performance of PA66 and expand its applications, a new strategy was proposed to introduce an alicyclic structure into PA66 chain by the copolymerization method. Initially, 3,3'-dimethyl-4,4'-diaminodicyclohexylmethane (MACM) was reacted with 1,6-adipic acid to form MACM6 salt, and then, it was copolymerized with PA66 salt to synthesize PA66/MACM6 copolymers with alicyclic structures. PA66/MACM6 copolymers exhibited good thermal stabilities, and the presence of alicyclic structure had no significant effect on their thermal stabilities.

View Article and Find Full Text PDF

Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.

View Article and Find Full Text PDF

Optimization of the manufacturing process based on scientific evidence is essential for quality control of active pharmaceutical ingredients. Real-time monitoring can ensure the production of stable quality crystals in the crystallization process. Raman spectroscopy is an attractive tool for pharmaceutical quality evaluation and process analytical technology because of its ability to analyze samples non-destructively and rapidly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!