Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stainless steel wire mesh supported molecularly imprinted composite membranes for selective separation of Ebracteolata Compound B (ECB) were prepared based on surface polymerization using ECB separated from as a template, acrylamide as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, azodiisobutyronitrile as an initiator, and stainless steel wire mesh as support. Structure and purity of ECB were characterized by nuclear magenetic resonance (¹H-NMR, C-NMR) and ultra high performance liquid chromatography (UHPLC). The molecularly imprinted composite membranes were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The membrane adsorbed on the ECB reached equilibrium about 30 min later, with a maximum adsorption amount of 3.39 μmol/cm². Adsorption behavior between ECB and the molecularly imprinted composite membranes followed pseudo-second-order kinetics equation and Freundlich isotherm model. The molecularly imprinted composite membranes that could selectively identify and transport ECB in similar structures have a permeation rate of 38.71% to ECB. The ECB content in the permeation solution derived from the extract of through the imprinted membrane was 87%. Overall, the obtained results demonstrated that an efficient approach with the molecularly imprinted composite membranes for selective separation of ECB from .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384690 | PMC |
http://dx.doi.org/10.3390/molecules24030565 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!