The solid-state structure of the β-blocker metoprolol: a combined experimental and in silico investigation.

Acta Crystallogr C Struct Chem

Department of Chemistry `Ugo Schiff', University of Florence, Via della Lastruccia 3, Sesto Fiorentino-FI, I-50019, Italy.

Published: February 2019

Metoprolol {systematic name: (RS)-1-isopropylamino-3-[4-(2-methoxyethyl)phenoxy]propan-2-ol}, CHNO, is a cardioselective β-adrenergic blocking agent that shares part of its molecular skeleton with a large number of other β-blockers. Results from its solid-state characterization by single-crystal and variable-temperature powder X-ray diffraction and differential scanning calorimetry are presented. Its molecular and crystal arrangements have been further investigated by molecular modelling, by a Cambridge Structural Database (CSD) survey and by Hirshfeld surface analysis. In the crystal, the side arm bearing the isopropyl group, which is common to other β-blockers, adopts an all-trans conformation, which is the most stable arrangement from modelling data. The crystal packing of metoprolol is dominated by an O-H...N/N...H-O pair of hydrogen bonds (as also confirmed by a Hirshfeld surface analysis), which gives rise to chains containing alternating R and S metoprolol molecules extending along the b axis, supplemented by a weaker O...H-N/N-H...O pair of interactions. In addition, within the same stack of molecules, a C-H...O contact, partially oriented along the b and c axes, links homochiral molecules. Amongst the solid-state structures of molecules structurally related to metoprolol deposited in the CSD, the β-blocker drug betaxolol shows the closest analogy in terms of three-dimensional arrangement and interactions. Notwithstanding their close similarity, the crystal lattices of the two drugs respond differently on increasing temperature: metoprolol expands anisotropically, while for betaxolol, an isotropic thermal expansion is observed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363042PMC
http://dx.doi.org/10.1107/S2053229618017084DOI Listing

Publication Analysis

Top Keywords

hirshfeld surface
8
surface analysis
8
metoprolol
6
solid-state structure
4
structure β-blocker
4
β-blocker metoprolol
4
metoprolol combined
4
combined experimental
4
experimental silico
4
silico investigation
4

Similar Publications

γ- and δ-lactones were formed by bromine oxidation of commercially available D-lyxose, as confirmed by IR analysis. The former was isolated, and its structure was confirmed by NMR spectra and X-ray analysis. In this structure, the presence of both intermolecular and intramolecular hydrogen bonds was found.

View Article and Find Full Text PDF

X-ray structural analysis of bis(guanidinium) disodium hypodiphosphate heptahydrate, (CHN)Na(PO)·7HO revealed close Na...

View Article and Find Full Text PDF

In this work, we present the synthesis, solid-state characterization, and studies of two pyrazole derivatives: 5-(2-methylphenoxy)-3-methyl-1-phenyl-1-pyrazole-4-carbaldehyde (I) and 5-(4-methylphenoxy)-3-methyl-1-phenyl-1-pyrazole-4-carbaldehyde (II). The molecular crystal properties, in terms of intermolecular hydrogen bonds and other weak interactions, are analyzed using single crystal X-ray diffraction. The Hirshfeld surfaces computational method is used to quantify the intermolecular interactions, density functional theory for theoretical structural optimization, and its comparison with the experimental structure and studies using docking and molecular dynamics studies of I and II with CDC7-kinase.

View Article and Find Full Text PDF

The amorphous/crystalline (A/C) assembly in molecular solids has a direct bearing on their attributes and applications, including mechanical, pharmaceutical, electronic and photophysical.  A systematic analysis of the molecular features and interactions that determine the predilection towards the A, C or bi-stable A-C states is critical.  This fundamental problem is addressed through an exhaustive investigation of a large family of alkoxyalkyl diaminodicyanoquinodimethanes (ROR'-DADQs); enhancement of their fluorescence from the solution, to the A, to the C state serves as an excellent signature of the phase preference and temporal stability.

View Article and Find Full Text PDF

We report the synthesis and characterization of new, user-friendly gold(I) [Au(μ-(NH)CCF)] coordination polymer and [AuCl(NH(NH=)CCF)] complex. These compounds were investigated for potential application as precursors in chemical vapor deposition (CVD) and focused electron/ion beam-induced deposition (FEBID/FIBID), which are additive methods to produce nanomaterials. Single-crystal X-ray diffraction, elemental analysis, and infrared spectroscopy were used to determine the complexes' composition and structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!