An artificial neural network model for clinical score prediction in Alzheimer disease using structural neuroimaging measures.

J Psychiatry Neurosci

From the Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ont. (Bhagwat, Chakravarty); the Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Que. (Bhagwat, Chakravarty); the Kimel Family Translational Imaging-Genetics Research Lab, Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont. (Bhagwat, Pipitone, Voineskos); the Department of Psychiatry, University of Toronto, Toronto, Ont. (Voineskos); and the Department of Psychiatry, McGill University, Montreal, Que. (Chakravarty), Canada.

Published: July 2019

Background: The development of diagnostic and prognostic tools for Alzheimer disease is complicated by substantial clinical heterogeneity in prodromal stages. Many neuroimaging studies have focused on case–control classification and predicting conversion from mild cognitive impairment to Alzheimer disease, but predicting scores from clinical assessments (such as the Alzheimer’s Disease Assessment Scale or the Mini Mental State Examination) using MRI data has received less attention. Predicting clinical scores can be crucial in providing a nuanced prognosis and inferring symptomatic severity.

Methods: We predicted clinical scores at the individual level using a novel anatomically partitioned artificial neural network (APANN) model. The model combined input from 2 structural MRI measures relevant to the neurodegenerative patterns observed in Alzheimer disease: hippocampal segmentations and cortical thickness. We evaluated the performance of the APANN model with 10 rounds of 10-fold cross-validation in 3 experiments, using cohorts from the Alzheimer’s Disease Neuroimaging Initiative (ADNI): ADNI1, ADNI2 and ADNI1 + 2.

Results: Pearson correlation and root mean square error between the actual and predicted scores on the Alzheimer’s Disease Assessment Scale (ADNI1: r = 0.60; ADNI2: r = 0.68; ADNI1 + 2: r = 0.63) and Mini Mental State Examination (ADNI1: r = 0.52; ADNI2: r = 0.55; ADNI1 + 2: r = 0.55) showed that APANN can accurately infer clinical severity from MRI data.

Limitations: To rigorously validate the model, we focused primarily on large cross-sectional baseline data sets with only proof-of-concept longitudinal results.

Conclusion: The APANN provides a highly robust and scalable framework for predicting clinical severity at the individual level using high-dimensional, multimodal neuroimaging data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6606432PMC
http://dx.doi.org/10.1503/jpn.180016DOI Listing

Publication Analysis

Top Keywords

alzheimer disease
16
alzheimer’s disease
12
artificial neural
8
neural network
8
disease assessment
8
assessment scale
8
mini mental
8
mental state
8
state examination
8
predicting clinical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!