Purpose: The objective of this study was to improve the surface characteristics of poly (methyl methacrylate) (PMMA) by developing a novel, thin film coating process and to characterize the resulting coated surface.

Materials And Methods: An atomic layer deposition (ALD) technique was developed to deposit a titanium dioxide (TiO ) nano-thin film on PMMA. The surface wettability for both coated and uncoated PMMA was determined by measuring water contact angle. Wear resistance was assessed using a mechanical tooth-brushing device with a 50 g load for 6000 strokes after 5 months of water storage. A denture cleanser challenge test was performed by using sonication in 3.8% sodium perborate for 1 hour with aged specimens. X-ray photoelectron spectroscopy (XPS) was used before and after the brushing test and challenge test to analyze the PMMA surface chemical composition. The mechanical strength of coated and uncoated PMMA was measured using a three-point bending test. Surface microbial interactions were also evaluated by assessing Candida albicans biofilm attachment.

Results: Nano-TiO coating (30 nm thick) was successfully deposited on PMMA at 65°C. After coating, water contact angle decreased from 70° to less than 5°. After brushing test, the coating remained intact. XPS analysis revealed no loss of TiO from coated specimens following brushing and denture cleanser sonication for 1 hour. There was no statistically significant difference in mechanical strength (MPa) (mean ± SD) between PMMA (139.4 ± 11.3) and TiO -PMMA (160.7 ± 37.1) (p = 0.0995). C. albicans attachment decreased by 63% to 77% on the coated PMMA surface.

Conclusions: ALD is a promising technique to modify surface properties of PMMA and resulted in a stable adherent thin film. By depositing a TiO coating, PMMA surface properties may lead to significantly reduced microorganism adhesion and easier pathogen removal from PMMA. For patients who wear dentures, reducing the oral microbial biofilm burden using a TiO -coated PMMA surface could positively impact their oral and systemic health.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jopr.13032DOI Listing

Publication Analysis

Top Keywords

pmma surface
16
pmma
12
titanium dioxide
8
thin film
8
coated uncoated
8
uncoated pmma
8
water contact
8
contact angle
8
denture cleanser
8
challenge test
8

Similar Publications

Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.

View Article and Find Full Text PDF

Very high heat is generated during the polymerization of poly (methyl methacrylate) (PMMA) bone cement, which is used for implant fixation in orthopedic surgery. As such, it has been suggested that irrigating the bone cement layer in the surgical site with a saline solution is a way of cooling the layer. In this study, we aimed to determine the influence of irrigation with a saline solution on the flexural strength and the microstructure of the test specimens of two PMMA bone cement brands: Simplex P and FIX 1.

View Article and Find Full Text PDF

Ultrathin, Friendly Environmental, and Flexible CsPb(Cl/Br)-Silica Composite Film for Blue-Light-Emitting Diodes.

Langmuir

December 2024

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).

View Article and Find Full Text PDF

Innovative Polymeric Biomaterials for Intraocular Lenses in Cataract Surgery.

J Funct Biomater

December 2024

Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada.

Intraocular lenses (IOLs) play a pivotal role in restoring vision following cataract surgery. The evolution of polymeric biomaterials has been central to addressing challenges such as biocompatibility, optical clarity, mechanical stability, and resistance to opacification. This review explores essential requirements for IOL biomaterials, emphasizing their ability to mitigate complications like posterior capsule opacification (PCO) and dysphotopsias while maintaining long-term durability and visual quality.

View Article and Find Full Text PDF

Objectives To assess the influence of cigarette smoke (CS) on the color and surface roughness of 3D printed, milled, and traditionally fabricated provisional crown and bridge (PC&B) materials. Materials and methods 112 disc-shaped samples were made employing four techniques and materials (28 per group) to fabricate PC&B prostheses. Specimens were fabricated using standard protocols, such as 3D printing, milling, conventional bis-acrylic resin, and traditional autopolymerizing polymethyl methacrylate (PMMA) resin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!