Download full-text PDF

Source
http://dx.doi.org/10.1111/1346-8138.14799DOI Listing

Publication Analysis

Top Keywords

b-cell lymphoblastic
4
lymphoblastic leukemia/lymphoma
4
leukemia/lymphoma infants
4
infants report
4
report cases
4
cases face
4
b-cell
1
leukemia/lymphoma
1
infants
1
report
1

Similar Publications

How to combine multiple tools for the genetic diagnosis work-up of pediatric B-cell acute lymphoblastic leukemia.

Ann Hematol

January 2025

Hematology Service, Experimental Hematology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.

This study investigated the importance of comprehensive genetic diagnosis in pediatric B-cell acute lymphoblastic leukemia (B-ALL). We analyzed 175 B-ALL employing karyotyping, FISH, MLPA, targeted next-generation sequencing (t-NGS), and Optical Genome Mapping (OGM). This approach achieved an 83% classification rate, identifying 17 distinct genetic subtypes.

View Article and Find Full Text PDF

Intrachromosomal amplification of chromosome 21 (iAMP21) B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in children is a high-risk subtype for which targeted drugs are lacking. In this study, we determined the frequency of secondary lesions in 28 iAMP21 BCP-ALL patient samples and investigated cellular sensitivity for candidate-targeted drugs. iAMP21 was enriched in aberrations (10.

View Article and Find Full Text PDF

Background: Immune effector cell (IEC) therapies, including chimeric antigen receptor (CAR)-modified T-cell therapy, have shown efficacy in pediatric B-cell acute lymphoblastic leukemia (B-ALL) and are being investigated for other malignancies. A common toxicity associated with IEC therapy is cytokine release syndrome (CRS), which can lead to cardiovascular decompensation due to systemic inflammation. Data are limited regarding cardiovascular adverse effects in children.

View Article and Find Full Text PDF

Background: Recent genomic research has identified several genetic factors contributing to B-cell acute lymphoblastic leukemia (B-ALL). However, the exact cause of the disease is still not fully understood. It is known that mutations in the TAL2 gene play important roles in the development of acute lymphoblastic leukemia.

View Article and Find Full Text PDF

Despite the success of the CD19xCD3 T cell engager blinatumomab in B-cell acute lymphoblastic leukemia (B-ALL), treatment failure is common and can manifest with antigen loss and extramedullary disease (EMD) relapse. To understand the impact of leukemia genetics on outcomes, we reviewed 267 adult patients with B-ALL treated with blinatumomab and used next generation sequencing to identify molecular alterations. Patients received blinatumomab for relapsed/refractory (R/R) disease (n=150), minimal residual disease (MRD+) (n=88), upfront as induction (n=10), or as consolidation in MRD- state (n=19).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!