Purpose: Previous works have been suggested that individual sensory liking is a predictor of dietary intake and weight status, and may consequently influence development of cardiometabolic diseases (CMDs). We investigated the association between sensory liking for fat-and-salt, fat-and-sweet, sweet or salt and the onset of hypertension, diabetes and cardiovascular diseases (CVDs) over 6 years in adults, and the mediating effects of dietary intake and body mass index (BMI).
Methods: We examined the CMDs risk among 41,332 (for CVD and diabetes) and 37,936 (for hypertension) French adults (NutriNet-Santé cohort). Liking scores, individual characteristics, diet and anthropometry were assessed at baseline using questionnaires. Health events were collected during 6 years. Associations between sensory liking and CMDs risk, and the mediating effect of diet and BMI, were assessed using Cox proportional hazards models.
Results: Sensory liking for fat-and-salt was associated with an increased risk of diabetes, hypertension and CVD [hazard ratios (HR) for 1-point increment of the sensory score: HR 1.30 (95% CI 1.18, 1.43), HR 1.08 (1.04, 1.13) and HR 1.10 (1.02, 1.19), respectively]. BMI and dietary intake both explained 93%, 98% and 70%, of the overall variation of liking for fat-and-salt liking in diabetes, hypertension and CVD, respectively. Liking for fat-and-sweet and liking for salt were also associated with an increased risk of diabetes [HR 1.09 (1.01, 1.17) and HR 1.09 (1.01, 1.18), respectively], whereas liking for sweet was associated with a decreased risk [HR 0.76 (0.69, 0.84)].
Conclusions: Higher liking for fat-and-salt is significantly associated with CMDs risk, largely explained by dietary intake and BMI. Our findings may help to guide effective targeted measures in prevention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00394-019-01904-x | DOI Listing |
J Exp Biol
January 2025
Michigan State University, Department of Fisheries and Wildlife, East Lansing, MI, USA.
Efficient navigation is crucial for the reproductive success of many migratory species, often driven by competing pressures to conserve energy and reduce predation risk. Little is known about how non-homing species achieve this balance. We show that sea lamprey (Petromyzon marinus), an ancient extant vertebrate, uses persistent patterns in hydro-geomorphology to quickly and efficiently navigate through complex ecosystems.
View Article and Find Full Text PDFNeuroimage
January 2025
Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada. Electronic address:
In response to sensory deprivation, the brain adapts to efficiently navigate a modified perceptual environment through a process referred to as compensatory crossmodal plasticity, allowing the remaining senses to repurpose deprived regions and networks. A mechanism that has been proposed to contribute to this plasticity involves adaptations within subcortical nuclei that trigger cascading effects throughout the brain. The current study uses 7T MRI to investigate the effect of perinatal deafness on the volumes of subcortical structures in felines, focusing on key sensory nuclei within the brainstem and thalamus.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
The Rift Valley fever virus (RVFV) causes haemorrhagic fever, encephalitis, and permanent blindness and has been listed by the WHO as a priority pathogen. To study RVFV pathogenesis and identify small-molecule antivirals, we established a novel In Vivo model using zebrafish larvae. Pericardial injection of RVFV resulted in ~4 log viral RNA copies/larva, which was inhibited by the antiviral 2'-fluoro-2'-deoxycytidine.
View Article and Find Full Text PDFBiomedicines
January 2025
Second Department of Internal Medicine, Division of Nephrology, Kansai Medical University, Hirakata 573-1010, Japan.
: Charcot-Marie-Tooth (CMT) disease is an inherited peripheral neuropathy primarily involving motor and sensory neurons. Mutations in INF2, an actin assembly factor, cause two diseases: peripheral neuropathy CMT-DIE (MIM614455) and/or focal segmental glomerulosclerosis (FSGS). These two phenotypes arise from the progressive degeneration affecting podocytes and Schwann cells.
View Article and Find Full Text PDFFoods
January 2025
Sensory and Consumer Science Group, Postharvest Department, Valencian Institute for Agricultural Research (IVIA), CV-315, Km. 10.7, 46113 Valencia, Spain.
In the original publication [...
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!