The biosynthesis of isoprene by microorganisms is a promising green route. However, the yield of isoprene is limited due to the generation of excess NAD(P)H via the mevalonate (MVA) pathway, which converts more glucose into CO or undesired reduced by-products. The production of 1,3-propanediol (1,3-PDO) from glycerol is a typical NAD(P)H-consuming process, which restricts 1,3-PDO yield to ~ 0.7 mol/mol. In this study, we propose a strategy of redox cofactor balance by coupling the production of isoprene with 1,3-PDO fermentation. With the introduction and optimization of the dual pathways in an engineered Escherichia coli, ~ 85.2% of the excess NADPH from isoprene pathway was recycled for 1,3-PDO production. The best strain G05 simultaneously produced 665.2 mg/L isoprene and 2532.1 mg/L 1,3-PDO under flask fermentation conditions. The yields were 0.3 mol/mol glucose and 1.0 mol/mol glycerol, respectively, showing 3.3- and 4.3-fold improvements relative to either pathway independently. Since isoprene is a volatile organic compound (VOC) whereas 1,3-PDO is separated from the fermentation broth, their coproduction process does not increase the complexity or cost for the separation from each other. Hence, the presented strategy will be especially useful for developing efficient biocatalysts for other biofuels and biochemicals, which are driven by cofactor concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-018-09578-x | DOI Listing |
Sci Total Environ
January 2025
School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai 200240, China. Electronic address:
Biogenic volatile organic compounds (BVOCs) are emitted by urban vegetation and can interact with anthropogenic pollutants to generate secondary organic aerosols (SOA) that are atmospheric pollutants in urban environments. In urban forests, SOA comprise up to 90 % of all fine aerosols (particulate matter smaller than 1 μm [PM]) in the summer. PM can greatly affect urban air quality and public health.
View Article and Find Full Text PDFHortic Res
January 2025
Metabolic engineering and Synthetic Biology Laboratory, Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, Punjab, India.
Triterpene (C30 isoprene compounds) represents the most structurally diverse class of natural products and has been extensively exploited in the food, medicine, and industrial sectors. Decades of research on medicinal triterpene biosynthetic pathways have revealed their roles in stress tolerance and shaping microbiota. However, the biological function and mechanism of triterpenes are not fully identified.
View Article and Find Full Text PDFSci Total Environ
January 2025
Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China.
As an essential component of urban natural sources, isoprene has strong interactions and synergies with anthropogenic precursors (volatile organic compounds and nitrogen oxides) of ozone (O), influencing O formation in urban areas. However, the variability of these effects under different anthropogenic emission scenarios has not been fully understood. This study, utilizing observational data from Dezhou (a medium-sized city in the center of North China Plain) from May to September in both 2019 and 2020, and incorporating four future scenarios based on Shared Socioeconomic Pathways (SSP1-2.
View Article and Find Full Text PDFSensors (Basel)
December 2024
UFZ Helmholtz Centre for Environmental Research, Department Monitoring and Exploration Technologies, Permoserstraße 15, 04318 Leipzig, Germany.
Ion mobility spectrometry is successfully used as a sensor technology for different applications. A feature of this method is that characteristic ion mobility spectra are obtained for each measurement rather than a sum signal. The spectra result from the different drift velocities of ions in a drift tube at atmospheric pressure.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Texas at Austin, Austin 78712, Texas, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!