Atomic layer deposition for efficient and stable perovskite solar cells.

Chem Commun (Camb)

Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.

Published: February 2019

Organic-inorganic hybrid metal halides are now the most attractive photovoltaic absorber materials, typically, methylammonium lead triiodides (MAPbI3). These unique semiconducting materials as absorbers demonstrate a remarkably improved power conversion efficiency of over 20% and now with a certified efficiency of 23.3%. Considering the Shockley-Queisser limit and their bandgaps, there is still much room to increase the efficiency. Stable devices with reproducibility and long-term use are essential for their commercialization. Atomic layer deposition (ALD) is a powerful technique to deposit high-quality thin films with excellent thickness accuracy and conformality, as well as with no pin-holes in a large area at low temperatures. ALD could be an ideal tool for efficient and stable perovskite solar cells. In particular, ALD will emerge for the production of tandem as well as flexible solar cells. This review contains the following recent research topics; underlying charge transport layers onto transparent conducting oxides (TCO), interfacial layers, overlying electron transport layers (ETLs), and encapsulation techniques utilized by ALD. Several extended understandings by recent studies and challenges toward further enhancing the efficiency and stability will be addressed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cc09578gDOI Listing

Publication Analysis

Top Keywords

solar cells
12
atomic layer
8
layer deposition
8
efficient stable
8
stable perovskite
8
perovskite solar
8
transport layers
8
deposition efficient
4
cells organic-inorganic
4
organic-inorganic hybrid
4

Similar Publications

This study investigates the enhancement of solar cell efficiency using nanofluid cooling systems, focusing on citrate-stabilized and PVP-stabilized silver nanoparticles. Traditional silicon-based and perovskite solar cells were examined to assess the impact of these nanofluids on efficiency improvement and thermal management. A Central Composite Design (CCD) was employed to vary nanoparticle concentration (0.

View Article and Find Full Text PDF

Evolution of Two-Dimensional Perovskite Films Under Atmospheric Exposure and Its Impact on Photovoltaic Performance.

ACS Appl Mater Interfaces

January 2025

Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.

Two-dimensional (2D) Ruddlesden-Popper perovskites (RPPs) have garnered significant attention due to their enhanced stability compared with their three-dimensional counterparts. However, the power conversion efficiency (PCE) of 2D perovskite solar cells (2D-PSCs) remains lower than that of 3D-PSCs. Understanding the microstructural evolution of 2D perovskite films during fabrication is essential for improving their performance.

View Article and Find Full Text PDF

In this study, we explore the photovoltaic performance of an innovative high efficiency heterostructure utilizing the quaternary semiconductor CuFeSnSe (CFTSe). This material features a kesterite symmetrical structure and is distinguished by its non-toxic nature and abundant presence in the earth's crust. Utilizing the SCAPS simulator, we explore various electrical specifications such as short circuit current (J), open circuit voltage (V), the fill factor (FF), and power conversion efficiency (PCE) were explored at a large range of thicknesses, and the acceptor carrier concentration doping (N).

View Article and Find Full Text PDF

Recent advances in the development of enantiopure BODIPYs and some related enantiomeric compounds.

Chem Commun (Camb)

January 2025

Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.

Article Synopsis
  • Small chiral organic dyes, especially chiral variants of boron dipyrromethene (BODIPY), are important for developing advanced smart chiroptical luminophores due to their outstanding photophysical properties.
  • Recent research has focused on inducing chirality in achiral BODIPY by creating chiral centers at various positions, enhancing synthetic accessibility.
  • The developments in chiral BODIPY have potential applications in fields such as photodynamic therapy, bio-imaging, optoelectronics, and more.
View Article and Find Full Text PDF

Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring TCOs. However, no promising industrial solution has been obtained yet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!