The aetiopathogenesis of inflammatory bowel diseases (IBD) involves the complex interaction between a patient's genetic predisposition, environment, gut microbiota and immune system. Currently, however, it is not known if the distinctive perturbations of the gut microbiota that appear to accompany both Crohn's disease and ulcerative colitis are the cause of, or the result of, the intestinal inflammation that characterizes IBD. With the utilization of novel systems biology technologies, we can now begin to understand not only details about compositional changes in the gut microbiota in IBD, but increasingly also the alterations in microbiota function that accompany these. Technologies such as metagenomics, metataxomics, metatranscriptomics, metaproteomics and metabonomics are therefore allowing us a deeper understanding of the role of the microbiota in IBD. Furthermore, the integration of these systems biology technologies through advancing computational and statistical techniques are beginning to understand the microbiome interactions that both contribute to health and diseased states in IBD. This review aims to explore how such systems biology technologies are advancing our understanding of the gut microbiota, and their potential role in delineating the aetiology, development and clinical care of IBD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348496 | PMC |
http://dx.doi.org/10.1177/1756284818822250 | DOI Listing |
Gut Microbes
December 2025
Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA.
The probiotic impact of microbes on host metabolism and health depends on both host genetics and bacterial genomic variation. is the predominant human gut commensal emerging as a next-generation probiotic. Although this bacterium exhibits substantial intraspecies diversity, it is unclear whether genetically distinct strains might lead to functional differences in the gut microbiome.
View Article and Find Full Text PDFJ Infect Dis
January 2025
Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA.
Background: Aging-related comorbidities are more common in people with human immunodeficiency virus (HIV) compared to people without HIV. The gut microbiome may play a role in healthy aging; however, this relationship remains unexplored in the context of HIV.
Methods: 16S rRNA gene sequencing was conducted on stool from 1409 women (69% with HIV; 2304 samples) and 990 men (54% with HIV; 1008 samples) in the MACS/WIHS Combined Cohort Study.
J Physiol
January 2025
Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Sacramento, CA, USA.
The complex microbial community residing in the human gut has long been understood to regulate gastrointestinal physiology and to participate in digestive diseases, but its extraintestinal actions and influences are increasingly recognized. This article discusses bidirectional interactions between the gut microbiome and athletic performance, metabolism, longevity and the ability of the gut-brain axis to influence cognitive function and mental health.
View Article and Find Full Text PDFmSystems
January 2025
Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China.
Unlabelled: The gut microbiota is closely associated with inflammatory bowel disease (IBD) and colorectal cancer (CRC). Probiotics such as (CB) or (AKK) have the potential to treat inflammatory bowel disease (IBD) or colorectal cancer (CRC). However, research on the combined therapeutic effects and immunomodulatory mechanisms of CB and AKK in treating IBD or CRC has never been studied.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA.
Gut microbiota and their metabolites profoundly impact host physiology. Targeted modulation of gut microbiota has been a long-term interest in the scientific community. Numerous studies have investigated the feasibility of utilizing dietary fibers (DFs) to modulate gut microbiota and promote the production of health-beneficial bacterial metabolites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!