The recent upsurge in "brain training and perceptual-cognitive training," proposing to improve isolated processes, such as brain function, visual perception, and decision-making, has created significant interest in elite sports practitioners, seeking to create an "edge" for athletes. The claims of these related "performance-enhancing industries" can be considered together as part of a proposing enhanced cognitive and perceptual skills and brain capacity to support performance in everyday life activities, including sport. For example, the "process training industry" promotes the idea that playing games not only makes you a better player but also makes you smarter, more alert, and a faster learner. In this position paper, we critically evaluate the effectiveness of both types of process training programmes in generalizing transfer to sport performance. These issues are addressed in three stages. First, we evaluate empirical evidence in support of perceptual-cognitive process training and its application to enhancing sport performance. Second, we critically review putative modularized mechanisms underpinning this kind of training, addressing limitations and subsequent problems. Specifically, we consider merits of this highly specific form of training, which focuses on training of isolated processes such as cognitive processes (attention, memory, thinking) and visual perception processes, separately from performance behaviors and actions. We conclude that these approaches may, at best, provide some "general transfer" of underlying processes to specific sport environments, but lack "specificity of transfer" to contextualize actual performance behaviors. A major weakness of process training methods is their focus on enhancing the performance in body "modules" (e.g., eye, brain, memory, anticipatory sub-systems). What is lacking is evidence on these isolated components are modified and subsequently interact with other process "modules," which are considered to underlie sport performance. Finally, we propose how an ecological dynamics approach, aligned with an embodied framework of cognition undermines the rationale that modularized processes can enhance performance in competitive sport. An ecological dynamics perspective proposes that the body is a complex adaptive system, interacting with performance environments in a functionally integrated manner, emphasizing that the inter-relation between motor processes, cognitive and perceptual functions, and the constraints of a sport task is best understood at the performer-environment scale of analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348252PMC
http://dx.doi.org/10.3389/fpsyg.2018.02468DOI Listing

Publication Analysis

Top Keywords

ecological dynamics
12
process training
12
sport performance
12
performance
9
sport
8
sport ecological
8
training
8
isolated processes
8
visual perception
8
cognitive perceptual
8

Similar Publications

Recovery of large yet ecologically important carnivores poses a formidable global challenge. Tiger () recovery in India, the world's most populated region, offers a distinct opportunity to evaluate the socio-ecological drivers of megafauna recovery. Tiger occupancy increased by 30% (at 2929 square kilometers per year) over the past two decades, leading to the largest global population occupying ~138,200 square kilometers.

View Article and Find Full Text PDF

Evaluating the dynamic co-evolution and feedback mechanisms within socio-ecological systems is crucial for determining the resilience and sustainability of environmental governance strategies. The grass-livestock system, as a complex entity encompassing livestock nutrition, foraging behavior, vegetation ecology, pastoralists' economic income, and policy interventions, indicates that any change in a single element may trigger a chain reaction within the system. This paper uses a system dynamics approach to construct a simulation model of the grass-livestock system in alpine pastoral areas, simulating the long-term dynamic co-evolution of the socio-ecological system in the Qilian Mountains region of China.

View Article and Find Full Text PDF

Hydraulic redistribution (HR) is a critical ecological process whereby plant roots transfer water from wetter to drier soil layers, significantly impacting soil moisture dynamics and plant water and nutrient uptake. Yet a comprehensive understanding of the mechanism triggering HR and its influencing factors remains elusive. Here, we conducted a systematic meta-analysis to discuss the influence of soil conditions and plant species characteristics on HR occurrence.

View Article and Find Full Text PDF

Microplastic pollution in aquatic ecosystems: impacts on diatom communities.

Environ Monit Assess

January 2025

Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.

In recent years, heightened concern has emerged regarding the pervasive presence of microplastics in the environment, particularly in aquatic ecosystems. This concern has prompted extensive scientific inquiry into microplastics' ecological and physiological implications, including threats to biodiversity. The robust adsorption capacity of microplastic surfaces facilitates their widespread distribution throughout aquatic ecosystems, acting also as carriers of organic pollutants.

View Article and Find Full Text PDF

Under current climate change patterns, rapidly changing environments can impose strong selection on traits. Costly traits that require heavy investment and strongly affect fitness may be particularly vulnerable to such changes. Despite organisms experiencing dynamic environments, our knowledge of costly trait response is limited as longitudinal studies across generations are rare.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!