Epithelial-to-mesenchymal transition (EMT) is implicated in cancer metastasis and drug resistance. Specifically targeting cancer cells in an EMT-like state may have therapeutic value. In this study, we developed a cell imaging-based high-content screening protocol to identify EMT-selective cytotoxic compounds. Among the 2,640 compounds tested, salinomycin and monensin, both monovalent cation ionophores, displayed a potent and selective cytotoxic effect against EMT-like cells. The mechanism of action of monensin was further evaluated. Monensin (10 nM) induced apoptosis, cell cycle arrest, and an increase in reactive oxygen species (ROS) production in TEM 4-18 cells. In addition, monensin rapidly induced swelling of Golgi apparatus and perturbed mitochondrial function. These are previously known effects of monensin, albeit occurring at much higher concentrations in the micromolar range. The cytotoxic effect of monensin was not blocked by inhibitors of ferroptosis. To explore the generality of our findings, we evaluated the toxicity of monensin in 24 human cancer cell lines and classified them as resistant or sensitive based on IC cutoff of 100 nM. Gene Set Enrichment Analysis identified EMT as the top enriched gene set in the sensitive group. Importantly, increased monensin sensitivity in EMT-like cells is associated with elevated uptake of H-monensin compared to resistant cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361972 | PMC |
http://dx.doi.org/10.1038/s41598-018-38019-y | DOI Listing |
J Dairy Sci
January 2025
Department of Animal Science, Penn State University, University Park, 16802. Electronic address:
Diet-induced milk fat depression (MFD) caused by UFA, and low fiber diets results in an increase in alternate rumen biohydrogenation intermediates. The impact of these MFD-inducing diets on milk odd and branched chain fatty acids (OBCFA) is not well known. The first objective of this study was to characterize the time course of changes in OBCFA in milk fat during induction and recovery of MFD induced with a high UFA and low fiber diet in 3 separate experiments.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Núcleo de Estudos em Pecuária Intensiva-NEPI, Universidade Federal de Mato Grosso, Campus Universitário de Sinop, Sinop 78557-267, Brazil.
Pasture-based beef cattle production systems aim to maximize the interaction between forage and supplements to increase activity. In addition, supplementation and the use of food additives help optimize production efficiency and improve the use of additional nutrients. The aim of this study was to evaluate the effects of the use of additives in protein-energy supplements (PESs) on the intake, digestibility, and ruminal parameters of beef cattle raised on pasture in the rearing phase.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Faculty of Veterinary Medicine and Animal Science, Universidad del Tolima, Ibagué 730006, Tolima, Colombia.
Animal production requires efficiency, safety and environmental sustainability. Bioactive compounds from tropical plants could modulate ruminal fermentation, providing an alternative method to antibiotic treatment and addressing concerns about antibiotic resistance. In this study, the aim was to determine the effects of extract (TDE) on performance, intake, digestibility and blood parameters [i.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States.
This paper presents the development of near-infrared (NIR) fluorescent probes, and , engineered from hemicyanine dyes with 1,8-naphthalic and rhodamine derivatives for optimized photophysical properties and precise mitochondrial targeting. Probes and exhibit absorption peaks at 737 nm and low fluorescence in phosphate-buffered saline (PBS) buffer. Notably, their fluorescence intensities, peaking at 684 () and 702 nm (), increase significantly with viscosity, as demonstrated through glycerol-to-PBS ratio experiments.
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland.
The poultry industry relies extensively on antibiotics and coccidiostats as essential tools for disease management and productivity enhancement. However, increasing concerns about antimicrobial resistance (AMR) and the toxicological safety of these substances have prompted a deeper examination of their broader impacts on animal and human health. This study investigates the toxicological effects of antibiotics and coccidiostats on the gut-brain axis and microbiota in turkeys, with a particular focus on molecular mechanisms that may influence neurochemical and inflammatory responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!