CEMIP (for "Cell migration-inducing protein" also called KIAA1199 and Hybid for "Hyaluronan-binding protein") expression is increased in cancers and described as a regulator of cell survival, growth and invasion. In rheumatoid arthritis, CEMIP is referred to as an angiogenic marker and participates in hyaluronic acid degradation. In this study, CEMIP expression is investigated in healthy and osteoarthritis (OA) cartilage from human and mouse. Its role in OA physiopathology is deciphered, specifically in chondrocytes proliferation and dedifferentiation and in the extracellular matrix remodeling. To this end, CEMIP, αSMA and types I and III collagen expressions were assessed in human OA and non-OA cartilage. CEMIP expression was also investigated in a mouse OA model. CEMIP expression was studied in vitro using a chondrocyte dedifferentiation model. High-throughput RNA sequencing was performed on chondrocytes after CEMIP silencing. Results showed that CEMIP was overexpressed in human and murine OA cartilage and along chondrocytes dedifferentiation. Most of genes deregulated in CEMIP-depleted cells were involved in cartilage turnover (e.g., collagens), mesenchymal transition and fibrosis. CEMIP regulated β-catenin protein level. Moreover, CEMIP was essential for chondrocytes proliferation and promoted αSMA expression, a fibrosis marker, and TGFβ signaling towards the p-Smad2/3 (Alk5/PAI-1) pathway. Interestingly, CEMIP was induced by the pSmad1/5 (Alk1) pathway. αSMA and type III collagen expressions were overexpressed in human OA cartilage and along chondrocytes dedifferentiation. Finally, CEMIP was co-expressed in situ with αSMA in all OA cartilage layers. In conclusion, CEMIP was sharply overexpressed in human and mouse OA cartilage and along chondrocytes dedifferentiation. CEMIP-regulated transdifferentiation of chondrocytes into "chondro-myo-fibroblasts" expressing α-SMA and type III collagen, two fibrosis markers. Moreover, these "chondro-myo-fibroblasts" were found in OA cartilage but not in healthy cartilage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362103 | PMC |
http://dx.doi.org/10.1038/s41419-019-1377-8 | DOI Listing |
Cancers (Basel)
January 2025
Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
Background: Cutaneous T-cell lymphoma (CTCL) is a type of non-Hodgkin's lymphoma that primarily affects the skin, rich in hyaluronic acid (HA). HA is a component of the extracellular matrix in the dermis and likely affects the development of CTCL, but the mechanism is poorly understood. Here we show that low-molecular-weight HA (LMWHA) possibly exacerbates CTCL, and bexarotene, already used in CTCL treatment, decreases HA production.
View Article and Find Full Text PDFCells
January 2025
European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany.
Hyaluronan (HA) levels are dynamically regulated homeostatically through biosynthesis and degradation. HA homeostasis is often perturbed under disease conditions. HA degradation products are thought to contribute to disease pathology.
View Article and Find Full Text PDFFASEB J
January 2025
Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
Cancer metastasis is the leading cause of cancer-related deaths, making early detection and the prevention of metastatic progression critical research priorities. Recent studies have expanded our understanding of CEMIP (KIAA1199, HYBID), revealing its involvement in cancer metastasis and its potential role in slowing cancer progression. CEMIP plays critical roles in several stages of cancer metastasis: First, CEMIP promotes cancer cell proliferation to maintain cell heterogeneity before the metastasis process.
View Article and Find Full Text PDFScand J Gastroenterol
December 2024
Department of Medical Parasitology, Faculty of Medicine, Faculty of Medicine, Elazig, Turkey.
Objective: Colorectal cancer (CRC) is a type of digestive system cancer. At the molecular level, some factors, including genetic and epigenetic factors, as well as various signaling pathways such as oxidative stress and inflammation, play an active role in the onset of CRC. Genetic and epigenetic mutations, particularly in oncogenes and tumor suppressor genes, occur during colorectal adenocarcinoma development as a result of a change in gastrointestinal epithelial cell proliferation and self-renewal rates.
View Article and Find Full Text PDFStem Cells Int
November 2024
Institute of Urology, Key Laboratory of Gansu Province for Urological Diseases, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou 730030, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!