A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites. | LitMetric

Background: Glutarylation, the addition of a glutaryl group (five carbons) to a lysine residue of a protein molecule, is an important post-translational modification and plays a regulatory role in a variety of physiological and biological processes. As the number of experimentally identified glutarylated peptides increases, it becomes imperative to investigate substrate motifs to enhance the study of protein glutarylation. We carried out a bioinformatics investigation of glutarylation sites based on amino acid composition using a public database containing information on 430 non-homologous glutarylation sites.

Results: The TwoSampleLogo analysis indicates that positively charged and polar amino acids surrounding glutarylated sites may be associated with the specificity in substrate site of protein glutarylation. Additionally, the chi-squared test was utilized to explore the intrinsic interdependence between two positions around glutarylation sites. Further, maximal dependence decomposition (MDD), which consists of partitioning a large-scale dataset into subgroups with statistically significant amino acid conservation, was used to capture motif signatures of glutarylation sites. We considered single features, such as amino acid composition (AAC), amino acid pair composition (AAPC), and composition of k-spaced amino acid pairs (CKSAAP), as well as the effectiveness of incorporating MDD-identified substrate motifs into an integrated prediction model. Evaluation by five-fold cross-validation showed that AAC was most effective in discriminating between glutarylation and non-glutarylation sites, according to support vector machine (SVM).

Conclusions: The SVM model integrating MDD-identified substrate motifs performed well, with a sensitivity of 0.677, a specificity of 0.619, an accuracy of 0.638, and a Matthews Correlation Coefficient (MCC) value of 0.28. Using an independent testing dataset (46 glutarylated and 92 non-glutarylated sites) obtained from the literature, we demonstrated that the integrated SVM model could improve the predictive performance effectively, yielding a balanced sensitivity and specificity of 0.652 and 0.739, respectively. This integrated SVM model has been implemented as a web-based system (MDDGlutar), which is now freely available at http://csb.cse.yzu.edu.tw/MDDGlutar/ .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394328PMC
http://dx.doi.org/10.1186/s12859-018-2394-9DOI Listing

Publication Analysis

Top Keywords

amino acid
20
substrate motifs
12
glutarylation sites
12
svm model
12
glutarylation
9
intrinsic interdependence
8
interdependence positions
8
protein glutarylation
8
acid composition
8
mdd-identified substrate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!