The preservation of bone viability at an osteotomy site is a critical variable for subsequent implant osseointegration. Recent biomechanical studies evaluating the consequences of site preparation led us to rethink the design of bone-cutting drills, especially those intended for implant site preparation. We present here a novel drill design that is designed to efficiently cut bone at a very low rotational velocity, obviating the need for irrigation as a coolant. The low-speed cutting produces little heat and, consequently, osteocyte viability is maintained. The lack of irrigation, coupled with the unique design of the cutting flutes, channels into the osteotomy autologous bone chips and osseous coagulum that have inherent osteogenic potential. Collectively, these features result in robust, new bone formation at rates significantly faster than those observed with conventional drilling protocols. These preclinical data have practical implications for the clinical preparation of osteotomies and alveolar bone reconstructive surgeries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406409PMC
http://dx.doi.org/10.3390/jcm8020170DOI Listing

Publication Analysis

Top Keywords

implant site
8
site preparation
8
bone
5
novel osteotomy
4
preparation
4
osteotomy preparation
4
preparation technique
4
technique preserve
4
preserve implant
4
site
4

Similar Publications

Cardiomyocytes can be implanted to remuscularize the failing heart. Challenges include sufficient cardiomyocyte retention for a sustainable therapeutic impact without intolerable side effects, such as arrhythmia and tumour growth. We investigated the hypothesis that epicardial engineered heart muscle (EHM) allografts from induced pluripotent stem cell-derived cardiomyocytes and stromal cells structurally and functionally remuscularize the chronically failing heart without limiting side effects in rhesus macaques.

View Article and Find Full Text PDF

Targeting membrane integrity and imidazoleglycerol-phosphate dehydratase: Sanguinarine multifaceted approach against Staphylococcus aureus biofilms.

Phytomedicine

January 2025

Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Background: Staphylococcus aureus is an opportunistic pathogen capable of readily forming biofilms, which can result in life-threatening infections involving different organs. Sanguinarine are benzo[c]phenanthridine alkaloids extracted from the Sanguinaria canadensis L. (Papaveraceae), which have a wide range of biological activities.

View Article and Find Full Text PDF

Introduction: Breast surgeries are classified as clean procedures associated with a lower risk of post-operative infections; however, the reported infection rates post-breast surgeries are still significantly high. Surgical site infections (SSIs) are indeed one of the most common and serious complications following breast surgery.

Methodology: A retrospective study assessed the rate of SSIs post-breast reconstructive surgery after the implementation of the infection control protocol at James Cook University Hospital and Friarage Hospital from December 2022 to June 2024.

View Article and Find Full Text PDF

Graphene oxide scaffolds promote functional improvements mediated by scaffold-invading axons in thoracic transected rats.

Bioact Mater

May 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.

Millions of patients and their caretakers live and deal with the devastating consequences of spinal cord injury (SCI) worldwide. Despite outstanding advances in the field to both understand and tackle these pathologies, a cure for SCI patients, with their peculiar characteristics, is still a mirage. One of the most promising therapeutic strategies to date for these patients involves the use of epidural electrical stimulation.

View Article and Find Full Text PDF

Post-surgical spinal infection occurs in up to 20% of patients, despite aggressive peri-operative antibiotic treatments. To improve prophylaxis, we have designed and evaluated an ultrasound-activated prophylactic antibiotic release system to combat post-surgical bacterial survival. Polylactic acid (PLA) clips (1 cm) were 3D-printed with an interior reservoir (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!