A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling and Optimization of Fractal Dimension in Wire Electrical Discharge Machining of EN 31 Steel Using the ANN-GA Approach. | LitMetric

To achieve enhanced surface characteristics in wire electrical discharge machining (WEDM), the present work reports the use of an artificial neural network (ANN) combined with a genetic algorithm (GA) for the correlation and optimization of WEDM process parameters. The parameters considered are the discharge current, voltage, pulse-on time, and pulse-off time, while the response is fractal dimension. The usefulness of fractal dimension to characterize a machined surface lies in the fact that it is independent of the resolution of the instrument or length scales. Experiments were carried out based on a rotatable central composite design. A feed-forward ANN architecture trained using the Levenberg-Marquardt (L-M) back-propagation algorithm has been used to model the complex relationship between WEDM process parameters and fractal dimension. After several trials, 4-3-3-1 neural network architecture has been found to predict the fractal dimension with reasonable accuracy, having an overall R-value of 0.97. Furthermore, the genetic algorithm (GA) has been used to predict the optimal combination of machining parameters to achieve a higher fractal dimension. The predicted optimal condition is seen to be in close agreement with experimental results. Scanning electron micrography of the machined surface reveals that the combined ANN-GA method can significantly improve the surface texture produced from WEDM by reducing the formation of re-solidified globules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384664PMC
http://dx.doi.org/10.3390/ma12030454DOI Listing

Publication Analysis

Top Keywords

fractal dimension
24
wire electrical
8
electrical discharge
8
discharge machining
8
neural network
8
genetic algorithm
8
wedm process
8
process parameters
8
machined surface
8
fractal
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!