Nutritionally, particle size has significant impact on food digestibility in the gastrointestinal system. Controlling the rheological behaviors of particles in dispersion has been of major interest in the industry. In this work, the quinoa seed was ground into flour, followed by fractionating into a selected particle size [+30-mesh (>595-μm) to +200-mesh (>74-μm)]. The effect of particle size on composition, antioxidant, and several functional and mechanical properties of all particle fractions were studied. The protein, crude fat, crude fiber, dietary fiber contents increased with decreasing the particle size while the starch content decreased. The water holding capacity and sediment volume fraction increased with the reduction of particles. Rheological measurement indicated that there were significant differences among rheograms between coarser and finer particles of QF. The finest particles produced a lower complex viscosity and lower mechanical rigidity. The final and setback viscosities decreased as particle size decreased. Microscopy showed irregular-shaped polygon structure for the QF. The particle fractions ranged between +100 and +200-mesh showed compositional resemblances and, subsequently, the properties. The highest extractability of phenolics and antioxidant properties were observed for the finest particles. The information generated from this work would help the industry to develop products with the desired particle size with optimum functional and nutritional properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2018.08.039 | DOI Listing |
BMC Microbiol
January 2025
Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, Egypt.
Background: Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers.
Methods: This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities.
J Fluoresc
January 2025
Chongqing College of Mobile Communication, Chongqing, 401520, China.
In this study, a simple and efficient method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) has been developed through a one-step hydrothermal process using hedyotis diffusa willd. The morphology, chemical composition, and optical properties of the resulting N-CQDs were thoroughly characterized. The synthesized N-CQDs exhibited a spherical shape with an average particle size of 4.
View Article and Find Full Text PDFSci Rep
January 2025
Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo, 12622, Egypt.
Food commodities, including mycotoxins naturally produced from toxigenic fungi (pre- or post-harvest), are particularly vulnerable to contamination. The study intended to use unique bioactive composites loaded with antimicrobial constituents for food packaging. Three composite types are based on carboxymethyl cellulose/shellac (CMC/SH) and loaded with pomegranate extract (POE) with or without jojoba oil (JOE) at various concentrations.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, P. R. China.
CaCoO/rGO was prepared by combining a sol-gel strategy and mechanical ball milling method. The Rietveld refinement results demonstrated a single-phase structure with a monoclinic symmetry. When utilized as an anode for lithium-ion batteries, it exhibited excellent rate performance and electrochemical stability due to the significantly decreasing particle size as well as the formation of a conductive rGO network in the composite after ball milling.
View Article and Find Full Text PDFJ Pharm Anal
November 2024
BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi, 10326, Republic of Korea.
To enhance the efficiency of vaccine manufacturing, this study focuses on optimizing the microfluidic conditions and lipid mix ratios of messenger RNA-lipid nanoparticles (mRNA-LNP). Different mRNA-LNP formulations ( = 24) were developed using an I-optimal design, where machine learning tools (XGBoost/Bayesian optimization and self-validated ensemble (SVEM)) were used to optimize the process and predict lipid mix ratio. The investigation included material attributes, their respective ratios, and process attributes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!