Hybrid gels can be used for controlled delivery of bioactives and for textural and rheological modification of foods. In this regard the hydrogel:oleogel ratio and gel development methodologies showed to be the aspects that influence most of their properties. The present study shows how different fractions of oleogel can influence the hydrogel matrix of an oleogel-in-hydrogel emulsified system in terms of polymorphic arrangement, microstructure, texture and rheology. The hydrogel was prepared by using an aqueous sodium alginate solution and the oleogel was prepared through the gelation of medium chain triglycerides with beeswax. Hybrid gels were prepared under constant shearing. Crystallinity was clearly changed as hydrogel and oleogel were combined. No polymorphism was observed in the X-Ray diffraction of hybrid gels, as these showed homogeneous results for all component ratios. The behaviour of samples with increasing oleogel-to-hydrogel ratio presented a decrease of both firmness and spreadability, and then, a decrease of gel adhesivity and cohesiveness. This textural response was a consequence of the disaggregated structure, stemming from the disruption of the hydrogel network, due to the inclusion of increasing amounts of oleogel. Rheological results showed that all hybrid gels presented a gel-like behaviour (G´ > G´´). Oleogel's strength influenced the overall textural and rheological performance of hybrid gels. This work demonstrates the possibility of producing hybrid gels aiming to tailor texture on food systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2018.10.019 | DOI Listing |
Int J Biol Macromol
January 2025
Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469, Maslak, Istanbul, Turkey. Electronic address:
Controllable macromolecular architecture formation via polysaccharide integrated ternary copolymerization was explored in the design of amino-functionalized n-alkyl methacrylate ester-based biohybrids. Ternary poly(dimethylaminoethyl methacrylate-co-glycidyl methacrylate-co-hydroxypropyl methacrylate)/sodium-alginate, PDGH/ALG, hybrids were designed using anionic polysaccharide through in-situ radical polymerization. An insight into the effect of ALG on physicochemical structure of ternary hybrids, particularly the interactions between polymeric chains, was created.
View Article and Find Full Text PDFGels
January 2025
Institute for Polymers and Composites, University of Minho, 5800-048 Guimarães, Portugal.
A set of carrageenans produced in the potassium form and with chemical structures varying from pure iota-carrageenans to nearly pure kappa-carrageenans is submitted to ultrasonication to reduce their molecular masses Mw while maintaining a constant chemical structure and a polydispersity index around 2. The kinetics of ultrasound-induced chain scission are found to be slower for polysaccharides richer in kappa-carrageenan disaccharide units. From the elasticity of samples directly gelled in a rheometer at 1 /% in 0.
View Article and Find Full Text PDFGels
January 2025
Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
Biosensors, which combine physical transducers with biorecognition elements, have seen significant advancement due to the heightened interest in rapid diagnostic technologies across a number of fields, including medical diagnostics, environmental monitoring, and food safety. In particular, polydiacetylene (PDA) is gaining attention as an ideal material for label-free colorimetric biosensor development due to its unique color-changing properties in response to external stimuli. PDA forms through the self-assembly of diacetylene monomers, with color change occurring as its conjugated backbone twists in response to stimuli such as temperature, pH, and chemical interactions.
View Article and Find Full Text PDFGels
January 2025
Manufacturing and Mechanical Engineering Technology, Rochester Institute of Technology, Rochester, NY 14623, USA.
The field of tissue engineering has made significant advancements with extrusion-based bioprinting, which uses shear forces to create intricate tissue structures. However, the success of this method heavily relies on the rheological properties of bioinks. Most bioinks use shear-thinning.
View Article and Find Full Text PDFGels
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia.
Itraconazole (ITZ) is a potent antifungal agent. Its oral administration is associated with systemic toxicity, and its efficacy in ocular formulations is limited. This study aims to enhance ITZ's ocular permeation and antifungal efficacy by loading it into deformable liposomes (DLs) based on Tween 80 (T) or Poloxamer 188 (P).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!