Heat-induced gelation of mixtures of micellar caseins and plant proteins in aqueous solution.

Food Res Int

IMMM UMR-CNRS 6283, Le Mans Université, Polymers, Colloids and Interfaces, 72085 Le Mans Cedex 9, France. Electronic address:

Published: February 2019

The aim of this work was to investigate how the heat-induced gelation of micellar casein (MC)-plant protein mixtures in aqueous solution is affected by protein composition (MC/plant proteins = 100/0 to 0/100) and total protein content (4%, 6% and 8% w/w) at pH 5.8 and 6.0. Two types of plant proteins were used: soy proteins (SP) and pea proteins (PP). Storage moduli (G') were measured during heating ramps from 20 to 90 °C and heat-induced gelation was characterised by a sharp increase in G' at a critical temperature (T). The gel stiffness (G) was determined after 1 h at 90 °C and the microstructure before and after heating was investigated by confocal laser scanning microscopy (CLSM). T was found to increase with increasing the fraction of MC replaced by SP or PP, due to binding of calcium to the plant proteins. The effect was stronger for SP, which bound calcium more efficiently than PP. T decreased with decreasing pH, possibly caused by decreased electrostatic repulsion and increased calcium release from MC. G increased with increasing total protein content and did not depend significantly on the pH. Interestingly, G showed a minimum as a function of the plant protein fraction (40% for SP and 70% for PP) in the mixtures. It is concluded that MC and plant proteins did not co-aggregate in the mixtures during heating, and that each type of protein formed networks independently.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2018.09.058DOI Listing

Publication Analysis

Top Keywords

plant proteins
16
heat-induced gelation
12
aqueous solution
8
total protein
8
protein content
8
proteins
6
protein
6
plant
5
mixtures
4
gelation mixtures
4

Similar Publications

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has evolved resistance to nearly every management tactic utilized in the field. This study investigated the resistance mechanisms in a WCR strain resistant to the Bacillus thuringiensis (Bt) protein eCry3.1Ab using dsRNA to knockdown WCR midgut genes previously documented to be associated with the resistance.

View Article and Find Full Text PDF

Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.

View Article and Find Full Text PDF

Ascochyta blight, caused by the necrotrophic fungus Ascochyta rabiei, is a major threat to chickpea production worldwide. Resistance genes with broad-spectrum protection against virulent A. rabiei strains are required to secure chickpea yield in the US Northern Great Plains.

View Article and Find Full Text PDF

In yeast and mammals, the EXO70 subunit of the exocyst complex plays a key role in mediating the tethering of exocytic vesicles to the plasma membrane (PM). In plants, however, the role of EXO70 in regulating vesicle tethering during exocytosis remains unclear. In land plants, EXO70 has undergone significant evolutionary expansion, resulting in multiple EXO70 paralogues that may allow the exocyst to form various isoforms with specific functions.

View Article and Find Full Text PDF

Dynamic transcriptomics unveils parallel transcriptional regulation in artemisinin and phenylpropanoid biosynthesis pathways under cold stress in Artemisia annua.

Sci Rep

December 2024

National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.

Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!