A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery. | LitMetric

Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery.

Colloids Surf B Biointerfaces

Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China. Electronic address:

Published: May 2019

In this work, the interfacial assembly of amphiphilic bacterial cellulose nanocrystals (BCNs) by Pickering emulsion method was proposed to improve the compatibility between the alginate and hydrophobic drug. BCNs prepared by sulfuric acid hydrolysis of biosynthesized bacterial cellulose was used as the particulate emulsifiers, whereas the model drug, alfacalcidol, dissolved in CHCl was used as the oil phase. The oil-in-water Pickering emulsions were prepared by ultrasonic dispersion method and then they were well dispersed in alginate solution. Ultimately, the drug-loaded alginate composite beads were successfully fabricated by external gelation. The characterization results revealed that BCNs possessed good colloidal property and could form flocculated fibril network, which was beneficial to stabilize Pickering emulsions. The irreversible adsorption of BCNs at the oil-water interface could make the Pickering emulsions preserve the droplets against coalescence and Ostwald ripening when they were dispersed in alginate solution. The interfacial assembly of amphiphilic BCNs and the hydrogel shells of the alginate composite beads formed by external gelation achieved the loading and sustained release of alfacalcidol. The release curves were well fitted by Korsmeyer Peppas model and the release mechanism of alfacalcidol from the composite beads was attributed to non-Fickian transport. In addition, the resultant alginate composite beads exhibited low cytotoxicity and good capabilities for osteoblast differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2019.01.057DOI Listing

Publication Analysis

Top Keywords

pickering emulsions
16
composite beads
16
bacterial cellulose
12
alginate composite
12
cellulose nanocrystals
8
hydrophobic drug
8
interfacial assembly
8
assembly amphiphilic
8
dispersed alginate
8
alginate solution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!