Stability of chromium in the ferrochrome slag dumps and leachate are affected by pH, redox potential and the presence of other metallic species in the slag. It is desirable to keep chromium in slag dumps in the trivalent [Cr(III)] state because trivalent chromium is 1000 times less toxic to living organisms than the hexavalent form [Cr(VI)]. Due to the low toxicity and low mobility of Cr(III), it is recommended to convert Cr(VI) to Cr(III) wherever possible to protect the health of living organisms. In this study, the role of Cr(VI) reducing organisms for stabilising chromium in slag dumps was evaluated in the presence of iron [oxidation states Fe(II) and Fe(III)]. The study showed that stabilisation of chromium species in the trivalent state was most favourable under aerated conditions. Up to 100 mg/L Cr(VI) was reduced in less than 24 h by cultures grown under aerobic conditions in the presence of Fe(III). A much shorter time (6 h) was required to reduce the same amount of Cr(VI) in the presence of Fe(II). When oxygen was completely excluded, it was only possible to reduce 20 mg/L in about 48 h which was much slower than the removal of 100 mg/L in less than 24 h under aerated conditions. Fe(II) contributed directly to catalytic reduction of Cr(VI) reduction whereas Fe(III) was beneficial to Cr(VI) reduction up to an initial Cr(VI) concentration of 75 mg/L. Evaluation of Cr(VI) reduction kinetics showed that Cr(VI) reduction under aerobic conditions followed the non-competitively inhibited mixed-order reaction. Cr(VI) reduction in sealed reactor vessels, under anaerobic conditions, followed a modified non-competitive inhibition reaction model. The results indicate that chromium stabilisation in ferrochrome slag dumps would require maintenance of a fully aerated dump supplemented by a culture of Cr(VI) reducing organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.01.094DOI Listing

Publication Analysis

Top Keywords

crvi reduction
20
slag dumps
16
crvi
11
chromium
8
presence iron
8
ferrochrome slag
8
chromium slag
8
living organisms
8
crvi reducing
8
reducing organisms
8

Similar Publications

Environmental concerns are driving the development of eco-friendly and effective methods for contaminant monitoring and remediation. In this study, a lanthanide porphyrin-based MOF with dual fluorescence sensing and photocatalytic properties was synthesized and applied for the detection and combined removal of Cr(VI) and ciprofloxacin (CIP). Using different excitation wavelengths, the material exhibited selective detection of Cr(VI) via fluorescence quenching and CIP through fluorescence enhancement.

View Article and Find Full Text PDF

Polyaniline-ZnTi-LDH heterostructure with d-π coupling for enhanced photocatalysis of pollutant removal.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China. Electronic address:

Heterointerface engineering is an effective strategy to design and construct high-performance photocatalysts. Herein, polyaniline (PANI) nanoparticles and ZnTi layered double hydroxide (ZnTi-LDH) nanosheets were integrated to form organic-inorganic heterostructure (PANI/LDH) via d-π electronic coupling using in-situ polymerization for photocatalytic oxidation/reduction towards tetracycline (TC) and Cr(VI). The photocatalytic activity was closely related to feed amount of aniline (Ani) in the polymerization process, which the abundant PANI nanoparticles were evenly distributed on the surface of ZnTi-LDH nanosheets at the proper Ani feed amount, and thus reinforced d-π electronic coupling at the organic-inorganic interfaces more efficiently.

View Article and Find Full Text PDF

Herein, novel hollow ZnO and ZnO@SnInS core-shell nanorods (NRs) with controlled shell thickness were developed via a facile synthesis approach for the efficient photocatalytic remediation of organic as well inorganic water pollutants. The introduction of SnInS shell layer coating over ZnO enhances visible light absorption, efficient exciton-mediated direct charge transfer, and reduces the band gap of ZnO@SnInS core-shell nanorods. The ZnO@SnInS core-shell nanorods show efficient solar-light driven catalytic efficiency for the disintegration of industrial dye (orange G), degradation of tetracycline, and reduction of hazardous Cr (VI) ions in aquatic systems.

View Article and Find Full Text PDF

There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.

View Article and Find Full Text PDF

Synchronous Photocatalytic Redox Conversion of Chromium(VI) and Arsenic(III) by Bimetallic Fe/Ti Metal-Organic Frameworks.

Inorg Chem

January 2025

School of Life and Environmental Sciences, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China.

In this work, bimetallic organic frameworks NH-MOFs(Fe, Ti) with different Fe/Ti molar ratios were prepared by a hydrothermal method for the synchronous redox transformation of Cr(VI) and As(III). These results showed that NH-MIL-125(Ti) was less effective in the photocatalytic removal of Cr(VI), whereas NH-MIL-88B(Fe) was less effective in the photocatalytic oxidative removal of As(III). Due to the introduction of Fe, the photocatalytic reduction removal of Cr(VI) (23.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!