On account of high oxidation ability of sulfate radical-based advanced oxidation processes (AOPs), the eco-friendly catalysts for peroxymonosulfate (PMS) activation have received considerable attentions. Previous studies mainly focused on Cobalt-based catalyst due to its high activation efficiency, such as CoO/MnO and FeCo-layered double hydroxide (LDH), whereas Cobalt-based catalyst usually has serious risk to environment. To avoid this risk, MnFe-LDH was primarily synthesized in this research by simple co-precipitation and subsequently utilized as an effective catalyst for peroxymonosulfate (PMS) activation to degrade organic pollutants. The experimental results demonstrated that MnFe-LDH with a lower dosage (0.20 g/L) could efficiently activate PMS to achieve 97.56% removal of target organic pollutants Acid Orange 7 (AO7). The AO7 degradation process followed the pseudo-first-order kinetic well with an activation energy of 21.32 kJ/mol. The intrinsic influencing mechanism was also investigated. The quenching experiment and electron spin resonance (ESR) indicated that sulfate and hydroxyl radicals were produced by the effective activation of PMS by MnFe-LDH, resulting in a high rate of decolorization. The possible AO7 removal pathway in the constructed MnFe-LDH/PMS system was presented on the basis of UV-vis spectrum analysis and GC-MS, which suggested that the AO7 degradation was firstly initiated by breaking azo linkages, then generated phenyl and naphthalene intermediates and finally presented as ring-opening products. This effective MnFe-LDH/PMS system showed great application potential in the purification of wastewater contaminated by refractory organic pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.01.190 | DOI Listing |
Part Fibre Toxicol
December 2024
Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA.
Background: Exposure to air pollution is associated with worldwide morbidity and mortality. Diesel exhaust (DE) emissions are important contributors which induce vascular inflammation and metabolic disturbances by unknown mechanisms. We aimed to determine molecular pathways activated by DE in the liver that could be responsible for its cardiometabolic toxicity.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.
PER: and polyfluoroalkyl substances (PFAS) are a large group of synthetic organic chemicals that are ubiquitous environmental pollutants. Among PFAS, perfluorodecanoic acid (PFDA) is one of the most toxic compounds, but the molecular basis behind its toxicity is not fully understood. In an interspecies comparison with placental cells (HTR-8/SVneo) and zebrafish embryos, we demonstrate that PFDA induces mitochondrial dysfunction and impairs fatty acid β-oxidation.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan 430070, China. Electronic address:
Organoarsenicals are toxic pollutants of global concern, and their environmental geochemical behavior might be greatly controlled by iron (Fe) (hydr)oxides through coprecipitation, which is rarely investigated. Here, the effects of the incorporation of dimethylarsenate (DMAs(V)), a typical organoarsenical, into the ferrihydrite (Fh) structure on the mineral physicochemical properties and Fe(II)-induced phase transformation of DMAs(V)-Fh coprecipitates with As/Fe molar ratios up to 0.0876±0.
View Article and Find Full Text PDFEnviron Res
December 2024
State Key Laboratory of Nuclear Resources and Environment, Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China.
Reclaimed water plays a pivotal role in addressing water scarcity and pollution. The carbon (C) cycle significantly impacts aquatic ecosystems and water quality, yet the C biogeochemical cycle in nutrient-rich reclaimed water remains enigmatic. This study focuses on reclaimed water, developing a conceptual biogeochemical mass balance model to examine C cycling and assess the C budget in the highly eutrophic Jian and Chaobai rivers.
View Article and Find Full Text PDFEnviron Res
December 2024
Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany.
This study reviewed the recovery of humic substances (HS) from anaerobic digestate of sludge as a potential fertilizer, focusing on the quantification of HS, the efficiency of HS recovery, and its interaction with pollutants. The potential pitfalls of current misunderstanding for HS quantification in sludge were pointed out. HS present in sludge showed potential to be used as a fertilizer, which solubilized insoluble phosphates for enhanced soil fertility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!